Title: PHYSICS
Subject:
Author: by Aristotle
Keywords:
Creator:
PDF Version: 1.2
Page No 1
PHYSICS
by Aristotle
Page No 2
Table of Contents
PHYSICS.............................................................................................................................................................1
by Aristotle..............................................................................................................................................1
Book I ...................................................................................................................................................................2
1..............................................................................................................................................................2
2..............................................................................................................................................................3
3..............................................................................................................................................................5
4..............................................................................................................................................................6
5..............................................................................................................................................................8
6..............................................................................................................................................................9
7............................................................................................................................................................10
8............................................................................................................................................................12
9............................................................................................................................................................13
Book II...............................................................................................................................................................14
1............................................................................................................................................................14
2............................................................................................................................................................15
3............................................................................................................................................................16
4............................................................................................................................................................18
5............................................................................................................................................................19
6............................................................................................................................................................20
7............................................................................................................................................................21
8............................................................................................................................................................22
9............................................................................................................................................................23
Book III ..............................................................................................................................................................24
1............................................................................................................................................................24
2............................................................................................................................................................26
3............................................................................................................................................................26
4............................................................................................................................................................27
5............................................................................................................................................................29
6............................................................................................................................................................32
7............................................................................................................................................................34
8............................................................................................................................................................35
Book IV ..............................................................................................................................................................35
1............................................................................................................................................................35
2............................................................................................................................................................37
3............................................................................................................................................................38
4............................................................................................................................................................39
5............................................................................................................................................................41
6............................................................................................................................................................42
7............................................................................................................................................................44
8............................................................................................................................................................45
9............................................................................................................................................................47
10..........................................................................................................................................................49
11..........................................................................................................................................................50
12..........................................................................................................................................................52
13..........................................................................................................................................................53
14..........................................................................................................................................................55
Book V...............................................................................................................................................................56
1............................................................................................................................................................56
PHYSICS
i
Page No 3
Table of Contents
2............................................................................................................................................................58
3............................................................................................................................................................60
4............................................................................................................................................................61
5............................................................................................................................................................63
6............................................................................................................................................................64
Book VI ..............................................................................................................................................................65
1............................................................................................................................................................65
2............................................................................................................................................................67
3............................................................................................................................................................69
4............................................................................................................................................................70
5............................................................................................................................................................71
6............................................................................................................................................................73
7............................................................................................................................................................74
8............................................................................................................................................................75
9............................................................................................................................................................77
10..........................................................................................................................................................78
Book VII............................................................................................................................................................79
1............................................................................................................................................................79
2............................................................................................................................................................81
3............................................................................................................................................................83
4............................................................................................................................................................84
5............................................................................................................................................................87
Book VIII...........................................................................................................................................................88
1............................................................................................................................................................88
2............................................................................................................................................................90
3............................................................................................................................................................91
4............................................................................................................................................................93
5............................................................................................................................................................95
6............................................................................................................................................................98
7..........................................................................................................................................................100
8..........................................................................................................................................................102
9..........................................................................................................................................................106
10........................................................................................................................................................107
PHYSICS
ii
Page No 4
PHYSICS
by Aristotle
translated by R. P. Hardie and R. K. Gaye
Book I
1
2
3
4
5
6
7
8
9
Book II
1
2
3
4
5
6
7
8
9
Book III
1
2
3
4
5
6
7
8
Book IV
1
2
3
4
5
6
7
8
9
PHYSICS 1
Page No 5
10
11
12
13
14
Book V
1
2
3
4
5
6
Book VI
1
2
3
4
5
6
7
8
9
10
Book VII
1
2
3
4
5
Book VIII
1
2
3
4
5
6
7
8
9
10
Book I
1
WHEN the objects of an inquiry, in any department, have principles, conditions, or elements, it is through
acquaintance with these that knowledge, that is to say scientific knowledge, is attained. For we do not think
that we know a thing until we are acquainted with its primary conditions or first principles, and have carried
PHYSICS
Book I 2
Page No 6
our analysis as far as its simplest elements. Plainly therefore in the science of Nature, as in other branches of
study, our first task will be to try to determine what relates to its principles.
The natural way of doing this is to start from the things which are more knowable and obvious to us and
proceed towards those which are clearer and more knowable by nature; for the same things are not 'knowable
relatively to us' and 'knowable' without qualification. So in the present inquiry we must follow this method
and advance from what is more obscure by nature, but clearer to us, towards what is more clear and more
knowable by nature.
Now what is to us plain and obvious at first is rather confused masses, the elements and principles of which
become known to us later by analysis. Thus we must advance from generalities to particulars; for it is a whole
that is best known to senseperception, and a generality is a kind of whole, comprehending many things
within it, like parts. Much the same thing happens in the relation of the name to the formula. A name, e.g.
'round', means vaguely a sort of whole: its definition analyses this into its particular senses. Similarly a child
begins by calling all men 'father', and all women 'mother', but later on distinguishes each of them.
2
The principles in question must be either (a) one or (b) more than one. If (a) one, it must be either (i)
motionless, as Parmenides and Melissus assert, or (ii) in motion, as the physicists hold, some declaring air to
be the first principle, others water. If (b) more than one, then either (i) a finite or (ii) an infinite plurality. If (i)
finite (but more than one), then either two or three or four or some other number. If (ii) infinite, then either as
Democritus believed one in kind, but differing in shape or form; or different in kind and even contrary.
A similar inquiry is made by those who inquire into the number of existents: for they inquire whether the
ultimate constituents of existing things are one or many, and if many, whether a finite or an infinite plurality.
So they too are inquiring whether the principle or element is one or many.
Now to investigate whether Being is one and motionless is not a contribution to the science of Nature. For
just as the geometer has nothing more to say to one who denies the principles of his sciencethis being a
question for a different science or for or common to allso a man investigating principles cannot argue with
one who denies their existence. For if Being is just one, and one in the way mentioned, there is a principle no
longer, since a principle must be the principle of some thing or things.
To inquire therefore whether Being is one in this sense would be like arguing against any other position
maintained for the sake of argument (such as the Heraclitean thesis, or such a thesis as that Being is one man)
or like refuting a merely contentious argumenta description which applies to the arguments both of Melissus
and of Parmenides: their premisses are false and their conclusions do not follow. Or rather the argument of
Melissus is gross and palpable and offers no difficulty at all: accept one ridiculous proposition and the rest
followsa simple enough proceeding.
We physicists, on the other hand, must take for granted that the things that exist by nature are, either all or
some of them, in motion which is indeed made plain by induction. Moreover, no man of science is bound to
solve every kind of difficulty that may be raised, but only as many as are drawn falsely from the principles of
the science: it is not our business to refute those that do not arise in this way: just as it is the duty of the
geometer to refute the squaring of the circle by means of segments, but it is not his duty to refute Antiphon's
proof. At the same time the holders of the theory of which we are speaking do incidentally raise physical
questions, though Nature is not their subject: so it will perhaps be as well to spend a few words on them,
especially as the inquiry is not without scientific interest.
PHYSICS
2 3
Page No 7
The most pertinent question with which to begin will be this: In what sense is it asserted that all things are
one? For 'is' is used in many senses. Do they mean that all things 'are' substance or quantities or qualities?
And, further, are all things one substanceone man, one horse, or one soulor quality and that one and the
samewhite or hot or something of the kind? These are all very different doctrines and all impossible to
maintain.
For if both substance and quantity and quality are, then, whether these exist independently of each other or
not, Being will be many.
If on the other hand it is asserted that all things are quality or quantity, then, whether substance exists or not,
an absurdity results, if the impossible can properly be called absurd. For none of the others can exist
independently: substance alone is independent: for everything is predicated of substance as subject. Now
Melissus says that Being is infinite. It is then a quantity. For the infinite is in the category of quantity,
whereas substance or quality or affection cannot be infinite except through a concomitant attribute, that is, if
at the same time they are also quantities. For to define the infinite you must use quantity in your formula, but
not substance or quality. If then Being is both substance and quantity, it is two, not one: if only substance, it
is not infinite and has no magnitude; for to have that it will have to be a quantity.
Again, 'one' itself, no less than 'being', is used in many senses, so we must consider in what sense the word is
used when it is said that the All is one.
Now we say that (a) the continuous is one or that (b) the indivisible is one, or (c) things are said to be 'one',
when their essence is one and the same, as 'liquor' and 'drink'.
If (a) their One is one in the sense of continuous, it is many, for the continuous is divisible ad infinitum.
There is, indeed, a difficulty about part and whole, perhaps not relevant to the present argument, yet
deserving consideration on its own accountnamely, whether the part and the whole are one or more than
one, and how they can be one or many, and, if they are more than one, in what sense they are more than one.
(Similarly with the parts of wholes which are not continuous.) Further, if each of the two parts is indivisibly
one with the whole, the difficulty arises that they will be indivisibly one with each other also.
But to proceed: If (b) their One is one as indivisible, nothing will have quantity or quality, and so the one will
not be infinite, as Melissus saysnor, indeed, limited, as Parmenides says, for though the limit is indivisible,
the limited is not.
But if (c) all things are one in the sense of having the same definition, like 'raiment' and 'dress', then it turns
out that they are maintaining the Heraclitean doctrine, for it will be the same thing 'to be good' and 'to be bad',
and 'to be good' and 'to be not good', and so the same thing will be 'good' and 'not good', and man and horse;
in fact, their view will be, not that all things are one, but that they are nothing; and that 'to be of
suchandsuch a quality' is the same as 'to be of suchandsuch a size'.
Even the more recent of the ancient thinkers were in a pother lest the same thing should turn out in their
hands both one and many. So some, like Lycophron, were led to omit 'is', others to change the mode of
expression and say 'the man has been whitened' instead of 'is white', and 'walks' instead of 'is walking', for
fear that if they added the word 'is' they should be making the one to be manyas if 'one' and 'being' were
always used in one and the same sense. What 'is' may be many either in definition (for example 'to be white'
is one thing, 'to be musical' another, yet the same thing be both, so the one is many) or by division, as the
whole and its parts. On this point, indeed, they were already getting into difficulties and admitted that the one
was manyas if there was any difficulty about the same thing being both one and many, provided that these
are not opposites; for 'one' may mean either 'potentially one' or 'actually one'.
PHYSICS
2 4
Page No 8
3
If, then, we approach the thesis in this way it seems impossible for all things to be one. Further, the
arguments they use to prove their position are not difficult to expose. For both of them reason contentiouslyI
mean both Melissus and Parmenides. [Their premisses are false and their conclusions do not follow. Or rather
the argument of Melissus is gross and palpable and offers no difficulty at all: admit one ridiculous
proposition and the rest followsa simple enough proceeding.] The fallacy of Melissus is obvious. For he
supposes that the assumption 'what has come into being always has a beginning' justifies the assumption
'what has not come into being has no beginning'. Then this also is absurd, that in every case there should be a
beginning of the thingnot of the time and not only in the case of coming to be in the full sense but also in the
case of coming to have a qualityas if change never took place suddenly. Again, does it follow that Being, if
one, is motionless? Why should it not move, the whole of it within itself, as parts of it do which are unities,
e.g. this water? Again, why is qualitative change impossible? But, further, Being cannot be one in form,
though it may be in what it is made of. (Even some of the physicists hold it to be one in the latter way, though
not in the former.) Man obviously differs from horse in form, and contraries from each other.
The same kind of argument holds good against Parmenides also, besides any that may apply specially to his
view: the answer to him being that 'this is not true' and 'that does not follow'. His assumption that one is used
in a single sense only is false, because it is used in several. His conclusion does not follow, because if we take
only white things, and if 'white' has a single meaning, none the less what is white will be many and not one.
For what is white will not be one either in the sense that it is continuous or in the sense that it must be defined
in only one way. 'Whiteness' will be different from 'what has whiteness'. Nor does this mean that there is
anything that can exist separately, over and above what is white. For 'whiteness' and 'that which is white'
differ in definition, not in the sense that they are things which can exist apart from each other. But
Parmenides had not come in sight of this distinction.
It is necessary for him, then, to assume not only that 'being' has the same meaning, of whatever it is
predicated, but further that it means (1) what just is and (2) what is just one.
It must be so, for (1) an attribute is predicated of some subject, so that the subject to which 'being' is
attributed will not be, as it is something different from 'being'. Something, therefore, which is not will be.
Hence 'substance' will not be a predicate of anything else. For the subject cannot be a being, unless 'being'
means several things, in such a way that each is something. But ex hypothesi 'being' means only one thing.
If, then, 'substance' is not attributed to anything, but other things are attributed to it, how does 'substance'
mean what is rather than what is not? For suppose that 'substance' is also 'white'. Since the definition of the
latter is different (for being cannot even be attributed to white, as nothing is which is not 'substance'), it
follows that 'white' is notbeingand that not in the sense of a particular notbeing, but in the sense that it is
not at all. Hence 'substance' is not; for it is true to say that it is white, which we found to mean notbeing. If
to avoid this we say that even 'white' means substance, it follows that 'being' has more than one meaning.
In particular, then, Being will not have magnitude, if it is substance. For each of the two parts must he in a
different sense.
(2) Substance is plainly divisible into other substances, if we consider the mere nature of a definition. For
instance, if 'man' is a substance, 'animal' and 'biped' must also be substances. For if not substances, they must
be attributesand if attributes, attributes either of (a) man or of (b) some other subject. But neither is possible.
(a) An attribute is either that which may or may not belong to the subject or that in whose definition the
subject of which it is an attribute is involved. Thus 'sitting' is an example of a separable attribute, while
PHYSICS
3 5
Page No 9
'snubness' contains the definition of 'nose', to which we attribute snubness. Further, the definition of the
whole is not contained in the definitions of the contents or elements of the definitory formula; that of 'man'
for instance in 'biped', or that of 'white man' in 'white'. If then this is so, and if 'biped' is supposed to be an
attribute of 'man', it must be either separable, so that 'man' might possibly not be 'biped', or the definition of
'man' must come into the definition of 'biped'which is impossible, as the converse is the case.
(b) If, on the other hand, we suppose that 'biped' and 'animal' are attributes not of man but of something else,
and are not each of them a substance, then 'man' too will be an attribute of something else. But we must
assume that substance is not the attribute of anything, that the subject of which both 'biped' and 'animal' and
each separately are predicated is the subject also of the complex 'biped animal'.
Are we then to say that the All is composed of indivisible substances? Some thinkers did, in point of fact,
give way to both arguments. To the argument that all things are one if being means one thing, they conceded
that notbeing is; to that from bisection, they yielded by positing atomic magnitudes. But obviously it is not
true that if being means one thing, and cannot at the same time mean the contradictory of this, there will be
nothing which is not, for even if what is not cannot be without qualification, there is no reason why it should
not be a particular notbeing. To say that all things will be one, if there is nothing besides Being itself, is
absurd. For who understands 'being itself' to be anything but a particular substance? But if this is so, there is
nothing to prevent there being many beings, as has been said.
It is, then, clearly impossible for Being to be one in this sense.
4
The physicists on the other hand have two modes of explanation.
The first set make the underlying body one either one of the three or something else which is denser than fire
and rarer than air then generate everything else from this, and obtain multiplicity by condensation and
rarefaction. Now these are contraries, which may be generalized into 'excess and defect'. (Compare Plato's
'Great and Small'except that he make these his matter, the one his form, while the others treat the one which
underlies as matter and the contraries as differentiae, i.e. forms).
The second set assert that the contrarieties are contained in the one and emerge from it by segregation, for
example Anaximander and also all those who assert that 'what is' is one and many, like Empedocles and
Anaxagoras; for they too produce other things from their mixture by segregation. These differ, however, from
each other in that the former imagines a cycle of such changes, the latter a single series. Anaxagoras again
made both his 'homceomerous' substances and his contraries infinite in multitude, whereas Empedocles posits
only the socalled elements.
The theory of Anaxagoras that the principles are infinite in multitude was probably due to his acceptance of
the common opinion of the physicists that nothing comes into being from notbeing. For this is the reason
why they use the phrase 'all things were together' and the coming into being of such and such a kind of thing
is reduced to change of quality, while some spoke of combination and separation. Moreover, the fact that the
contraries proceed from each other led them to the conclusion. The one, they reasoned, must have already
existed in the other; for since everything that comes into being must arise either from what is or from what is
not, and it is impossible for it to arise from what is not (on this point all the physicists agree), they thought
that the truth of the alternative necessarily followed, namely that things come into being out of existent
things, i.e. out of things already present, but imperceptible to our senses because of the smallness of their
bulk. So they assert that everything has been mixed in every. thing, because they saw everything arising out
of everything. But things, as they say, appear different from one another and receive different names
PHYSICS
4 6
Page No 10
according to the nature of the particles which are numerically predominant among the innumerable
constituents of the mixture. For nothing, they say, is purely and entirely white or black or sweet, bone or
flesh, but the nature of a thing is held to be that of which it contains the most.
Now (1) the infinite qua infinite is unknowable, so that what is infinite in multitude or size is unknowable in
quantity, and what is infinite in variety of kind is unknowable in quality. But the principles in question are
infinite both in multitude and in kind. Therefore it is impossible to know things which are composed of them;
for it is when we know the nature and quantity of its components that we suppose we know a complex.
Further (2) if the parts of a whole may be of any size in the direction either of greatness or of smallness (by
'parts' I mean components into which a whole can be divided and which are actually present in it), it is
necessary that the whole thing itself may be of any size. Clearly, therefore, since it is impossible for an
animal or plant to be indefinitely big or small, neither can its parts be such, or the whole will be the same. But
flesh, bone, and the like are the parts of animals, and the fruits are the parts of plants. Hence it is obvious that
neither flesh, bone, nor any such thing can be of indefinite size in the direction either of the greater or of the
less.
Again (3) according to the theory all such things are already present in one another and do not come into
being but are constituents which are separated out, and a thing receives its designation from its chief
constituent. Further, anything may come out of anythingwater by segregation from flesh and flesh from
water. Hence, since every finite body is exhausted by the repeated abstraction of a finite body, it seems
obviously to follow that everything cannot subsist in everything else. For let flesh be extracted from water
and again more flesh be produced from the remainder by repeating the process of separation: then, even
though the quantity separated out will continually decrease, still it will not fall below a certain magnitude. If,
therefore, the process comes to an end, everything will not be in everything else (for there will be no flesh in
the remaining water); if on the other hand it does not, and further extraction is always possible, there will be
an infinite multitude of finite equal particles in a finite quantitywhich is impossible. Another proof may be
added: Since every body must diminish in size when something is taken from it, and flesh is quantitatively
definite in respect both of greatness and smallness, it is clear that from the minimum quantity of flesh no
body can be separated out; for the flesh left would be less than the minimum of flesh.
Lastly (4) in each of his infinite bodies there would be already present infinite flesh and blood and brain
having a distinct existence, however, from one another, and no less real than the infinite bodies, and each
infinite: which is contrary to reason.
The statement that complete separation never will take place is correct enough, though Anaxagoras is not
fully aware of what it means. For affections are indeed inseparable. If then colours and states had entered into
the mixture, and if separation took place, there would be a 'white' or a 'healthy' which was nothing but white
or healthy, i.e. was not the predicate of a subject. So his 'Mind' is an absurd person aiming at the impossible,
if he is supposed to wish to separate them, and it is impossible to do so, both in respect of quantity and of
quality of quantity, because there is no minimum magnitude, and of quality, because affections are
inseparable.
Nor is Anaxagoras right about the coming to be of homogeneous bodies. It is true there is a sense in which
clay is divided into pieces of clay, but there is another in which it is not. Water and air are, and are generated
'from' each other, but not in the way in which bricks come 'from' a house and again a house 'from' bricks; and
it is better to assume a smaller and finite number of principles, as Empedocles does.
PHYSICS
4 7
Page No 11
5
All thinkers then agree in making the contraries principles, both those who describe the All as one and
unmoved (for even Parmenides treats hot and cold as principles under the names of fire and earth) and those
too who use the rare and the dense. The same is true of Democritus also, with his plenum and void, both of
which exist, be says, the one as being, the other as notbeing. Again he speaks of differences in position,
shape, and order, and these are genera of which the species are contraries, namely, of position, above and
below, before and behind; of shape, angular and angleless, straight and round.
It is plain then that they all in one way or another identify the contraries with the principles. And with good
reason. For first principles must not be derived from one another nor from anything else, while everything has
to be derived from them. But these conditions are fulfilled by the primary contraries, which are not derived
from anything else because they are primary, nor from each other because they are contraries.
But we must see how this can be arrived at as a reasoned result, as well as in the way just indicated.
Our first presupposition must be that in nature nothing acts on, or is acted on by, any other thing at random,
nor may anything come from anything else, unless we mean that it does so in virtue of a concomitant
attribute. For how could 'white' come from 'musical', unless 'musical' happened to be an attribute of the
notwhite or of the black? No, 'white' comes from 'notwhite'and not from any 'notwhite', but from black
or some intermediate colour. Similarly, 'musical' comes to be from 'notmusical', but not from any thing
other than musical, but from 'unmusical' or any intermediate state there may be.
Nor again do things pass into the first chance thing; 'white' does not pass into 'musical' (except, it may be, in
virtue of a concomitant attribute), but into 'notwhite'and not into any chance thing which is not white, but
into black or an intermediate colour; 'musical' passes into 'notmusical'and not into any chance thing other
than musical, but into 'unmusical' or any intermediate state there may be.
The same holds of other things also: even things which are not simple but complex follow the same principle,
but the opposite state has not received a name, so we fail to notice the fact. What is in tune must come from
what is not in tune, and vice versa; the tuned passes into untunednessand not into any untunedness, but into
the corresponding opposite. It does not matter whether we take attunement, order, or composition for our
illustration; the principle is obviously the same in all, and in fact applies equally to the production of a house,
a statue, or any other complex. A house comes from certain things in a certain state of separation instead of
conjunction, a statue (or any other thing that has been shaped) from shapelessnesseach of these objects
being partly order and partly composition.
If then this is true, everything that comes to be or passes away from, or passes into, its contrary or an
intermediate state. But the intermediates are derived from the contrariescolours, for instance, from black and
white. Everything, therefore, that comes to be by a natural process is either a contrary or a product of
contraries.
Up to this point we have practically had most of the other writers on the subject with us, as I have said
already: for all of them identify their elements, and what they call their principles, with the contraries, giving
no reason indeed for the theory, but contrained as it were by the truth itself. They differ, however, from one
another in that some assume contraries which are more primary, others contraries which are less so: some
those more knowable in the order of explanation, others those more familiar to sense. For some make hot and
cold, or again moist and dry, the conditions of becoming; while others make odd and even, or again Love and
Strife; and these differ from each other in the way mentioned.
PHYSICS
5 8
Page No 12
Hence their principles are in one sense the same, in another different; different certainly, as indeed most
people think, but the same inasmuch as they are analogous; for all are taken from the same table of columns,
some of the pairs being wider, others narrower in extent. In this way then their theories are both the same and
different, some better, some worse; some, as I have said, take as their contraries what is more knowable in the
order of explanation, others what is more familiar to sense. (The universal is more knowable in the order of
explanation, the particular in the order of sense: for explanation has to do with the universal, sense with the
particular.) 'The great and the small', for example, belong to the former class, 'the dense and the rare' to the
latter.
It is clear then that our principles must be contraries.
6
The next question is whether the principles are two or three or more in number.
One they cannot be, for there cannot be one contrary. Nor can they be innumerable, because, if so, Being will
not be knowable: and in any one genus there is only one contrariety, and substance is one genus: also a finite
number is sufficient, and a finite number, such as the principles of Empedocles, is better than an infinite
multitude; for Empedocles professes to obtain from his principles all that Anaxagoras obtains from his
innumerable principles. Lastly, some contraries are more primary than others, and some arise from othersfor
example sweet and bitter, white and blackwhereas the principles must always remain principles.
This will suffice to show that the principles are neither one nor innumerable.
Granted, then, that they are a limited number, it is plausible to suppose them more than two. For it is difficult
to see how either density should be of such a nature as to act in any way on rarity or rarity on density. The
same is true of any other pair of contraries; for Love does not gather Strife together and make things out of it,
nor does Strife make anything out of Love, but both act on a third thing different from both. Some indeed
assume more than one such thing from which they construct the world of nature.
Other objections to the view that it is not necessary to assume a third principle as a substratum may be added.
(1) We do not find that the contraries constitute the substance of any thing. But what is a first principle ought
not to be the predicate of any subject. If it were, there would be a principle of the supposed principle: for the
subject is a principle, and prior presumably to what is predicated of it. Again (2) we hold that a substance is
not contrary to another substance. How then can substance be derived from what are not substances? Or how
can nonsubstances be prior to substance?
If then we accept both the former argument and this one, we must, to preserve both, assume a third somewhat
as the substratum of the contraries, such as is spoken of by those who describe the All as one naturewater or
fire or what is intermediate between them. What is intermediate seems preferable; for fire, earth, air, and
water are already involved with pairs of contraries. There is, therefore, much to be said for those who make
the underlying substance different from these four; of the rest, the next best choice is air, as presenting
sensible differences in a less degree than the others; and after air, water. All, however, agree in this, that they
differentiate their One by means of the contraries, such as density and rarity and more and less, which may of
course be generalized, as has already been said into excess and defect. Indeed this doctrine too (that the One
and excess and defect are the principles of things) would appear to be of old standing, though in different
forms; for the early thinkers made the two the active and the one the passive principle, whereas some of the
more recent maintain the reverse.
To suppose then that the elements are three in number would seem, from these and similar considerations, a
PHYSICS
6 9
Page No 13
plausible view, as I said before. On the other hand, the view that they are more than three in number would
seem to be untenable.
For the one substratum is sufficient to be acted on; but if we have four contraries, there will be two
contrarieties, and we shall have to suppose an intermediate nature for each pair separately. If, on the other
hand, the contrarieties, being two, can generate from each other, the second contrariety will be superfluous.
Moreover, it is impossible that there should be more than one primary contrariety. For substance is a single
genus of being, so that the principles can differ only as prior and posterior, not in genus; in a single genus
there is always a single contrariety, all the other contrarieties in it being held to be reducible to one.
It is clear then that the number of elements is neither one nor more than two or three; but whether two or
three is, as I said, a question of considerable difficulty.
7
We will now give our own account, approaching the question first with reference to becoming in its widest
sense: for we shall be following the natural order of inquiry if we speak first of common characteristics, and
then investigate the characteristics of special cases.
We say that one thing comes to be from another thing, and one sort of thing from another sort of thing, both
in the case of simple and of complex things. I mean the following. We can say (1) 'man becomes musical', (2)
what is 'notmusical becomes musical', or (3), the 'notmusical man becomes a musical man'. Now what
becomes in (1) and (2)'man' and 'not musical'I call simple, and what each becomes'musical'simple also.
But when (3) we say the 'notmusical man becomes a musical man', both what becomes and what it becomes
are complex.
As regards one of these simple 'things that become' we say not only 'this becomes soandso', but also 'from
being this, comes to be soandso', as 'from being notmusical comes to be musical'; as regards the other we
do not say this in all cases, as we do not say (1) 'from being a man he came to be musical' but only 'the man
became musical'.
When a 'simple' thing is said to become something, in one case (1) it survives through the process, in the
other (2) it does not. For man remains a man and is such even when he becomes musical, whereas what is not
musical or is unmusical does not continue to exist, either simply or combined with the subject.
These distinctions drawn, one can gather from surveying the various cases of becoming in the way we are
describing that, as we say, there must always be an underlying something, namely that which becomes, and
that this, though always one numerically, in form at least is not one. (By that I mean that it can be described
in different ways.) For 'to be man' is not the same as 'to be unmusical'. One part survives, the other does not:
what is not an opposite survives (for 'man' survives), but 'notmusical' or 'unmusical' does not survive, nor
does the compound of the two, namely 'unmusical man'.
We speak of 'becoming that from this' instead of 'this becoming that' more in the case of what does not
survive the change'becoming musical from unmusical', not 'from man'but there are exceptions, as we
sometimes use the latter form of expression even of what survives; we speak of 'a statue coming to be from
bronze', not of the 'bronze becoming a statue'. The change, however, from an opposite which does not survive
is described indifferently in both ways, 'becoming that from this' or 'this becoming that'. We say both that 'the
unmusical becomes musical', and that 'from unmusical he becomes musical'. And so both forms are used of
the complex, 'becoming a musical man from an unmusical man', and unmusical man becoming a musical
man'.
PHYSICS
7 10
Page No 14
But there are different senses of 'coming to be'. In some cases we do not use the expression 'come to be', but
'come to be soandso'. Only substances are said to 'come to be' in the unqualified sense.
Now in all cases other than substance it is plain that there must be some subject, namely, that which becomes.
For we know that when a thing comes to be of such a quantity or quality or in such a relation, time, or place,
a subject is always presupposed, since substance alone is not predicated of another subject, but everything
else of substance.
But that substances too, and anything else that can be said 'to be' without qualification, come to be from some
substratum, will appear on examination. For we find in every case something that underlies from which
proceeds that which comes to be; for instance, animals and plants from seed.
Generally things which come to be, come to be in different ways: (1) by change of shape, as a statue; (2) by
addition, as things which grow; (3) by taking away, as the Hermes from the stone; (4) by putting together, as
a house; (5) by alteration, as things which 'turn' in respect of their material substance.
It is plain that these are all cases of coming to be from a substratum.
Thus, clearly, from what has been said, whatever comes to be is always complex. There is, on the one hand,
(a) something which comes into existence, and again (b) something which becomes thatthe latter (b) in two
senses, either the subject or the opposite. By the 'opposite' I mean the 'unmusical', by the 'subject' 'man', and
similarly I call the absence of shape or form or order the 'opposite', and the bronze or stone or gold the
'subject'.
Plainly then, if there are conditions and principles which constitute natural objects and from which they
primarily are or have come to behave come to be, I mean, what each is said to be in its essential nature, not
what each is in respect of a concomitant attributeplainly, I say, everything comes to be from both subject
and form. For 'musical man' is composed (in a way) of 'man' and 'musical': you can analyse it into the
definitions of its elements. It is clear then that what comes to be will come to be from these elements.
Now the subject is one numerically, though it is two in form. (For it is the man, the goldthe 'matter'
generallythat is counted, for it is more of the nature of a 'this', and what comes to be does not come from it
in virtue of a concomitant attribute; the privation, on the other hand, and the contrary are incidental in the
process.) And the positive form is onethe order, the acquired art of music, or any similar predicate.
There is a sense, therefore, in which we must declare the principles to be two, and a sense in which they are
three; a sense in which the contraries are the principlessay for example the musical and the unmusical, the
hot and the cold, the tuned and the untunedand a sense in which they are not, since it is impossible for the
contraries to be acted on by each other. But this difficulty also is solved by the fact that the substratum is
different from the contraries, for it is itself not a contrary. The principles therefore are, in a way, not more in
number than the contraries, but as it were two, nor yet precisely two, since there is a difference of essential
nature, but three. For 'to be man' is different from 'to be unmusical', and 'to be unformed' from 'to be bronze'.
We have now stated the number of the principles of natural objects which are subject to generation, and how
the number is reached: and it is clear that there must be a substratum for the contraries, and that the contraries
must be two. (Yet in another way of putting it this is not necessary, as one of the contraries will serve to
effect the change by its successive absence and presence.)
The underlying nature is an object of scientific knowledge, by an analogy. For as the bronze is to the statue,
the wood to the bed, or the matter and the formless before receiving form to any thing which has form, so is
the underlying nature to substance, i.e. the 'this' or existent.
PHYSICS
7 11
Page No 15
This then is one principle (though not one or existent in the same sense as the 'this'), and the definition was
one as we agreed; then further there is its contrary, the privation. In what sense these are two, and in what
sense more, has been stated above. Briefly, we explained first that only the contraries were principles, and
later that a substratum was indispensable, and that the principles were three; our last statement has elucidated
the difference between the contraries, the mutual relation of the principles, and the nature of the substratum.
Whether the form or the substratum is the essential nature of a physical object is not yet clear. But that the
principles are three, and in what sense, and the way in which each is a principle, is clear.
So much then for the question of the number and the nature of the principles.
8
We will now proceed to show that the difficulty of the early thinkers, as well as our own, is solved in this
way alone.
The first of those who studied science were misled in their search for truth and the nature of things by their
inexperience, which as it were thrust them into another path. So they say that none of the things that are either
comes to be or passes out of existence, because what comes to be must do so either from what is or from what
is not, both of which are impossible. For what is cannot come to be (because it is already), and from what is
not nothing could have come to be (because something must be present as a substratum). So too they
exaggerated the consequence of this, and went so far as to deny even the existence of a plurality of things,
maintaining that only Being itself is. Such then was their opinion, and such the reason for its adoption.
Our explanation on the other hand is that the phrases 'something comes to be from what is or from what is
not', 'what is not or what is does something or has something done to it or becomes some particular thing', are
to be taken (in the first way of putting our explanation) in the same sense as 'a doctor does something or has
something done to him', 'is or becomes something from being a doctor.' These expressions may be taken in
two senses, and so too, clearly, may 'from being', and 'being acts or is acted on'. A doctor builds a house, not
qua doctor, but qua housebuilder, and turns gray, not qua doctor, but qua darkhaired. On the other hand he
doctors or fails to doctor qua doctor. But we are using words most appropriately when we say that a doctor
does something or undergoes something, or becomes something from being a doctor, if he does, undergoes,
or becomes qua doctor. Clearly then also 'to come to be soandso from notbeing' means 'qua notbeing'.
It was through failure to make this distinction that those thinkers gave the matter up, and through this error
that they went so much farther astray as to suppose that nothing else comes to be or exists apart from Being
itself, thus doing away with all becoming.
We ourselves are in agreement with them in holding that nothing can be said without qualification to come
from what is not. But nevertheless we maintain that a thing may 'come to be from what is not'that is, in a
qualified sense. For a thing comes to be from the privation, which in its own nature is notbeing,this not
surviving as a constituent of the result. Yet this causes surprise, and it is thought impossible that something
should come to be in the way described from what is not.
In the same way we maintain that nothing comes to be from being, and that being does not come to be except
in a qualified sense. In that way, however, it does, just as animal might come to be from animal, and an
animal of a certain kind from an animal of a certain kind. Thus, suppose a dog to come to be from a horse.
The dog would then, it is true, come to be from animal (as well as from an animal of a certain kind) but not as
animal, for that is already there. But if anything is to become an animal, not in a qualified sense, it will not be
from animal: and if being, not from beingnor from notbeing either, for it has been explained that by 'from
not being' we mean from notbeing qua notbeing.
PHYSICS
8 12
Page No 16
Note further that we do not subvert the principle that everything either is or is not.
This then is one way of solving the difficulty. Another consists in pointing out that the same things can be
explained in terms of potentiality and actuality. But this has been done with greater precision elsewhere. So,
as we said, the difficulties which constrain people to deny the existence of some of the things we mentioned
are now solved. For it was this reason which also caused some of the earlier thinkers to turn so far aside from
the road which leads to coming to be and passing away and change generally. If they had come in sight of
this nature, all their ignorance would have been dispelled.
9
Others, indeed, have apprehended the nature in question, but not adequately.
In the first place they allow that a thing may come to be without qualification from not being, accepting on
this point the statement of Parmenides. Secondly, they think that if the substratum is one numerically, it must
have also only a single potentialitywhich is a very different thing.
Now we distinguish matter and privation, and hold that one of these, namely the matter, is notbeing only in
virtue of an attribute which it has, while the privation in its own nature is notbeing; and that the matter is
nearly, in a sense is, substance, while the privation in no sense is. They, on the other hand, identify their
Great and Small alike with not being, and that whether they are taken together as one or separately. Their
triad is therefore of quite a different kind from ours. For they got so far as to see that there must be some
underlying nature, but they make it onefor even if one philosopher makes a dyad of it, which he calls Great
and Small, the effect is the same, for he overlooked the other nature. For the one which persists is a joint
cause, with the form, of what comes to bea mother, as it were. But the negative part of the contrariety may
often seem, if you concentrate your attention on it as an evil agent, not to exist at all.
For admitting with them that there is something divine, good, and desirable, we hold that there are two other
principles, the one contrary to it, the other such as of its own nature to desire and yearn for it. But the
consequence of their view is that the contrary desires its wtextinction. Yet the form cannot desire itself, for it
is not defective; nor can the contrary desire it, for contraries are mutually destructive. The truth is that what
desires the form is matter, as the female desires the male and the ugly the beautifulonly the ugly or the
female not per se but per accidens.
The matter comes to be and ceases to be in one sense, while in another it does not. As that which contains the
privation, it ceases to be in its own nature, for what ceases to bethe privationis contained within it. But as
potentiality it does not cease to be in its own nature, but is necessarily outside the sphere of becoming and
ceasing to be. For if it came to be, something must have existed as a primary substratum from which it should
come and which should persist in it; but this is its own special nature, so that it will be before coming to be.
(For my definition of matter is just thisthe primary substratum of each thing, from which it comes to be
without qualification, and which persists in the result.) And if it ceases to be it will pass into that at the last,
so it will have ceased to be before ceasing to be.
The accurate determination of the first principle in respect of form, whether it is one or many and what it is or
what they are, is the province of the primary type of science; so these questions may stand over till then. But
of the natural, i.e. perishable, forms we shall speak in the expositions which follow.
The above, then, may be taken as sufficient to establish that there are principles and what they are and how
many there are. Now let us make a fresh start and proceed.
PHYSICS
9 13
Page No 17
Book II
1
Of things that exist, some exist by nature, some from other causes.
'By nature' the animals and their parts exist, and the plants and the simple bodies (earth, fire, air, water)for
we say that these and the like exist 'by nature'.
All the things mentioned present a feature in which they differ from things which are not constituted by
nature. Each of them has within itself a principle of motion and of stationariness (in respect of place, or of
growth and decrease, or by way of alteration). On the other hand, a bed and a coat and anything else of that
sort, qua receiving these designations i.e. in so far as they are products of arthave no innate impulse to
change. But in so far as they happen to be composed of stone or of earth or of a mixture of the two, they do
have such an impulse, and just to that extent which seems to indicate that nature is a source or cause of being
moved and of being at rest in that to which it belongs primarily, in virtue of itself and not in virtue of a
concomitant attribute.
I say 'not in virtue of a concomitant attribute', because (for instance) a man who is a doctor might cure
himself. Nevertheless it is not in so far as he is a patient that he possesses the art of medicine: it merely has
happened that the same man is doctor and patientand that is why these attributes are not always found
together. So it is with all other artificial products. None of them has in itself the source of its own production.
But while in some cases (for instance houses and the other products of manual labour) that principle is in
something else external to the thing, in others those which may cause a change in themselves in virtue of a
concomitant attributeit lies in the things themselves (but not in virtue of what they are).
'Nature' then is what has been stated. Things 'have a nature'which have a principle of this kind. Each of them
is a substance; for it is a subject, and nature always implies a subject in which it inheres.
The term 'according to nature' is applied to all these things and also to the attributes which belong to them in
virtue of what they are, for instance the property of fire to be carried upwardswhich is not a 'nature' nor 'has
a nature' but is 'by nature' or 'according to nature'.
What nature is, then, and the meaning of the terms 'by nature' and 'according to nature', has been stated. That
nature exists, it would be absurd to try to prove; for it is obvious that there are many things of this kind, and
to prove what is obvious by what is not is the mark of a man who is unable to distinguish what is selfevident
from what is not. (This state of mind is clearly possible. A man blind from birth might reason about colours.
Presumably therefore such persons must be talking about words without any thought to correspond.)
Some identify the nature or substance of a natural object with that immediate constituent of it which taken by
itself is without arrangement, e.g. the wood is the 'nature' of the bed, and the bronze the 'nature' of the statue.
As an indication of this Antiphon points out that if you planted a bed and the rotting wood acquired the power
of sending up a shoot, it would not be a bed that would come up, but woodwhich shows that the
arrangement in accordance with the rules of the art is merely an incidental attribute, whereas the real nature is
the other, which, further, persists continuously through the process of making.
But if the material of each of these objects has itself the same relation to something else, say bronze (or gold)
to water, bones (or wood) to earth and so on, that (they say) would be their nature and essence. Consequently
some assert earth, others fire or air or water or some or all of these, to be the nature of the things that are. For
PHYSICS
Book II 14
Page No 18
whatever any one of them supposed to have this characterwhether one thing or more than one thingthis or
these he declared to be the whole of substance, all else being its affections, states, or dispositions. Every such
thing they held to be eternal (for it could not pass into anything else), but other things to come into being and
cease to be times without number.
This then is one account of 'nature', namely that it is the immediate material substratum of things which have
in themselves a principle of motion or change.
Another account is that 'nature' is the shape or form which is specified in the definition of the thing.
For the word 'nature' is applied to what is according to nature and the natural in the same way as 'art' is
applied to what is artistic or a work of art. We should not say in the latter case that there is anything artistic
about a thing, if it is a bed only potentially, not yet having the form of a bed; nor should we call it a work of
art. The same is true of natural compounds. What is potentially flesh or bone has not yet its own 'nature', and
does not exist until it receives the form specified in the definition, which we name in defining what flesh or
bone is. Thus in the second sense of 'nature' it would be the shape or form (not separable except in statement)
of things which have in themselves a source of motion. (The combination of the two, e.g. man, is not 'nature'
but 'by nature' or 'natural'.)
The form indeed is 'nature' rather than the matter; for a thing is more properly said to be what it is when it has
attained to fulfilment than when it exists potentially. Again man is born from man, but not bed from bed. That
is why people say that the figure is not the nature of a bed, but the wood isif the bed sprouted not a bed but
wood would come up. But even if the figure is art, then on the same principle the shape of man is his nature.
For man is born from man.
We also speak of a thing's nature as being exhibited in the process of growth by which its nature is attained.
The 'nature' in this sense is not like 'doctoring', which leads not to the art of doctoring but to health. Doctoring
must start from the art, not lead to it. But it is not in this way that nature (in the one sense) is related to nature
(in the other). What grows qua growing grows from something into something. Into what then does it grow?
Not into that from which it arose but into that to which it tends. The shape then is nature.
'Shape' and 'nature', it should be added, are in two senses. For the privation too is in a way form. But whether
in unqualified coming to be there is privation, i.e. a contrary to what comes to be, we must consider later.
2
We have distinguished, then, the different ways in which the term 'nature' is used.
The next point to consider is how the mathematician differs from the physicist. Obviously physical bodies
contain surfaces and volumes, lines and points, and these are the subjectmatter of mathematics.
Further, is astronomy different from physics or a department of it? It seems absurd that the physicist should
be supposed to know the nature of sun or moon, but not to know any of their essential attributes, particularly
as the writers on physics obviously do discuss their shape also and whether the earth and the world are
spherical or not.
Now the mathematician, though he too treats of these things, nevertheless does not treat of them as the limits
of a physical body; nor does he consider the attributes indicated as the attributes of such bodies. That is why
he separates them; for in thought they are separable from motion, and it makes no difference, nor does any
falsity result, if they are separated. The holders of the theory of Forms do the same, though they are not aware
PHYSICS
2 15
Page No 19
of it; for they separate the objects of physics, which are less separable than those of mathematics. This
becomes plain if one tries to state in each of the two cases the definitions of the things and of their attributes.
'Odd' and 'even', 'straight' and 'curved', and likewise 'number', 'line', and 'figure', do not involve motion; not so
'flesh' and 'bone' and 'man'these are defined like 'snub nose', not like 'curved'.
Similar evidence is supplied by the more physical of the branches of mathematics, such as optics, harmonics,
and astronomy. These are in a way the converse of geometry. While geometry investigates physical lines but
not qua physical, optics investigates mathematical lines, but qua physical, not qua mathematical.
Since 'nature' has two senses, the form and the matter, we must investigate its objects as we would the
essence of snubness. That is, such things are neither independent of matter nor can be defined in terms of
matter only. Here too indeed one might raise a difficulty. Since there are two natures, with which is the
physicist concerned? Or should he investigate the combination of the two? But if the combination of the two,
then also each severally. Does it belong then to the same or to different sciences to know each severally?
If we look at the ancients, physics would to be concerned with the matter. (It was only very slightly that
Empedocles and Democritus touched on the forms and the essence.)
But if on the other hand art imitates nature, and it is the part of the same discipline to know the form and the
matter up to a point (e.g. the doctor has a knowledge of health and also of bile and phlegm, in which health is
realized, and the builder both of the form of the house and of the matter, namely that it is bricks and beams,
and so forth): if this is so, it would be the part of physics also to know nature in both its senses.
Again, 'that for the sake of which', or the end, belongs to the same department of knowledge as the means.
But the nature is the end or 'that for the sake of which'. For if a thing undergoes a continuous change and
there is a stage which is last, this stage is the end or 'that for the sake of which'. (That is why the poet was
carried away into making an absurd statement when he said 'he has the end for the sake of which he was
born'. For not every stage that is last claims to be an end, but only that which is best.)
For the arts make their material (some simply 'make' it, others make it serviceable), and we use everything as
if it was there for our sake. (We also are in a sense an end. 'That for the sake of which' has two senses: the
distinction is made in our work On Philosophy.) The arts, therefore, which govern the matter and have
knowledge are two, namely the art which uses the product and the art which directs the production of it. That
is why the using art also is in a sense directive; but it differs in that it knows the form, whereas the art which
is directive as being concerned with production knows the matter. For the helmsman knows and prescribes
what sort of form a helm should have, the other from what wood it should be made and by means of what
operations. In the products of art, however, we make the material with a view to the function, whereas in the
products of nature the matter is there all along.
Again, matter is a relative term: to each form there corresponds a special matter. How far then must the
physicist know the form or essence? Up to a point, perhaps, as the doctor must know sinew or the smith
bronze (i.e. until he understands the purpose of each): and the physicist is concerned only with things whose
forms are separable indeed, but do not exist apart from matter. Man is begotten by man and by the sun as
well. The mode of existence and essence of the separable it is the business of the primary type of philosophy
to define.
3
Now that we have established these distinctions, we must proceed to consider causes, their character and
number. Knowledge is the object of our inquiry, and men do not think they know a thing till they have
PHYSICS
3 16
Page No 20
grasped the 'why' of (which is to grasp its primary cause). So clearly we too must do this as regards both
coming to be and passing away and every kind of physical change, in order that, knowing their principles, we
may try to refer to these principles each of our problems.
In one sense, then, (1) that out of which a thing comes to be and which persists, is called 'cause', e.g. the
bronze of the statue, the silver of the bowl, and the genera of which the bronze and the silver are species.
In another sense (2) the form or the archetype, i.e. the statement of the essence, and its genera, are called
'causes' (e.g. of the octave the relation of 2:1, and generally number), and the parts in the definition.
Again (3) the primary source of the change or coming to rest; e.g. the man who gave advice is a cause, the
father is cause of the child, and generally what makes of what is made and what causes change of what is
changed.
Again (4) in the sense of end or 'that for the sake of which' a thing is done, e.g. health is the cause of walking
about. ('Why is he walking about?' we say. 'To be healthy', and, having said that, we think we have assigned
the cause.) The same is true also of all the intermediate steps which are brought about through the action of
something else as means towards the end, e.g. reduction of flesh, purging, drugs, or surgical instruments are
means towards health. All these things are 'for the sake of' the end, though they differ from one another in
that some are activities, others instruments.
This then perhaps exhausts the number of ways in which the term 'cause' is used.
As the word has several senses, it follows that there are several causes of the same thing not merely in virtue
of a concomitant attribute), e.g. both the art of the sculptor and the bronze are causes of the statue. These are
causes of the statue qua statue, not in virtue of anything else that it may beonly not in the same way, the one
being the material cause, the other the cause whence the motion comes. Some things cause each other
reciprocally, e.g. hard work causes fitness and vice versa, but again not in the same way, but the one as end,
the other as the origin of change. Further the same thing is the cause of contrary results. For that which by its
presence brings about one result is sometimes blamed for bringing about the contrary by its absence. Thus we
ascribe the wreck of a ship to the absence of the pilot whose presence was the cause of its safety.
All the causes now mentioned fall into four familiar divisions. The letters are the causes of syllables, the
material of artificial products, fire, of bodies, the parts of the whole, and the premisses of the conclusion, in
the sense of 'that from which'. Of these pairs the one set are causes in the sense of substratum, e.g. the parts,
the other set in the sense of essencethe whole and the combination and the form. But the seed and the doctor
and the adviser, and generally the maker, are all sources whence the change or stationariness originates, while
the others are causes in the sense of the end or the good of the rest; for 'that for the sake of which' means what
is best and the end of the things that lead up to it. (Whether we say the 'good itself or the 'apparent good'
makes no difference.)
Such then is the number and nature of the kinds of cause.
Now the modes of causation are many, though when brought under heads they too can be reduced in number.
For 'cause' is used in many senses and even within the same kind one may be prior to another (e.g. the doctor
and the expert are causes of health, the relation 2:1 and number of the octave), and always what is inclusive
to what is particular. Another mode of causation is the incidental and its genera, e.g. in one way 'Polyclitus',
in another 'sculptor' is the cause of a statue, because 'being Polyclitus' and 'sculptor' are incidentally
conjoined. Also the classes in which the incidental attribute is included; thus 'a man' could be said to be the
cause of a statue or, generally, 'a living creature'. An incidental attribute too may be more or less remote, e.g.
suppose that 'a pale man' or 'a musical man' were said to be the cause of the statue.
PHYSICS
3 17
Page No 21
All causes, both proper and incidental, may be spoken of either as potential or as actual; e.g. the cause of a
house being built is either 'housebuilder' or 'housebuilder building'.
Similar distinctions can be made in the things of which the causes are causes, e.g. of 'this statue' or of 'statue'
or of 'image' generally, of 'this bronze' or of 'bronze' or of 'material' generally. So too with the incidental
attributes. Again we may use a complex expression for either and say, e.g. neither 'Polyclitus' nor 'sculptor'
but 'Polyclitus, sculptor'.
All these various uses, however, come to six in number, under each of which again the usage is twofold.
Cause means either what is particular or a genus, or an incidental attribute or a genus of that, and these either
as a complex or each by itself; and all six either as actual or as potential. The difference is this much, that
causes which are actually at work and particular exist and cease to exist simultaneously with their effect, e.g.
this healing person with this beinghealed person and that housebuilding man with that beingbuilt house;
but this is not always true of potential causesthe house and the housebuilder do not pass away
simultaneously.
In investigating the cause of each thing it is always necessary to seek what is most precise (as also in other
things): thus man builds because he is a builder, and a builder builds in virtue of his art of building. This last
cause then is prior: and so generally.
Further, generic effects should be assigned to generic causes, particular effects to particular causes, e.g. statue
to sculptor, this statue to this sculptor; and powers are relative to possible effects, actually operating causes to
things which are actually being effected.
This must suffice for our account of the number of causes and the modes of causation.
4
But chance also and spontaneity are reckoned among causes: many things are said both to be and to come to
be as a result of chance and spontaneity. We must inquire therefore in what manner chance and spontaneity
are present among the causes enumerated, and whether they are the same or different, and generally what
chance and spontaneity are.
Some people even question whether they are real or not. They say that nothing happens by chance, but that
everything which we ascribe to chance or spontaneity has some definite cause, e.g. coming 'by chance' into
the market and finding there a man whom one wanted but did not expect to meet is due to one's wish to go
and buy in the market. Similarly in other cases of chance it is always possible, they maintain, to find
something which is the cause; but not chance, for if chance were real, it would seem strange indeed, and the
question might be raised, why on earth none of the wise men of old in speaking of the causes of generation
and decay took account of chance; whence it would seem that they too did not believe that anything is by
chance. But there is a further circumstance that is surprising. Many things both come to be and are by chance
and spontaneity, and although know that each of them can be ascribed to some cause (as the old argument
said which denied chance), nevertheless they speak of some of these things as happening by chance and
others not. For this reason also they ought to have at least referred to the matter in some way or other.
Certainly the early physicists found no place for chance among the causes which they recognizedlove, strife,
mind, fire, or the like. This is strange, whether they supposed that there is no such thing as chance or whether
they thought there is but omitted to mention itand that too when they sometimes used it, as Empedocles
does when he says that the air is not always separated into the highest region, but 'as it may chance'. At any
rate he says in his cosmogony that 'it happened to run that way at that time, but it often ran otherwise.' He
PHYSICS
4 18
Page No 22
tells us also that most of the parts of animals came to be by chance.
There are some too who ascribe this heavenly sphere and all the worlds to spontaneity. They say that the
vortex arose spontaneously, i.e. the motion that separated and arranged in its present order all that exists. This
statement might well cause surprise. For they are asserting that chance is not responsible for the existence or
generation of animals and plants, nature or mind or something of the kind being the cause of them (for it is
not any chance thing that comes from a given seed but an olive from one kind and a man from another); and
yet at the same time they assert that the heavenly sphere and the divinest of visible things arose
spontaneously, having no such cause as is assigned to animals and plants. Yet if this is so, it is a fact which
deserves to be dwelt upon, and something might well have been said about it. For besides the other
absurdities of the statement, it is the more absurd that people should make it when they see nothing coming to
be spontaneously in the heavens, but much happening by chance among the things which as they say are not
due to chance; whereas we should have expected exactly the opposite.
Others there are who, indeed, believe that chance is a cause, but that it is inscrutable to human intelligence, as
being a divine thing and full of mystery.
Thus we must inquire what chance and spontaneity are, whether they are the same or different, and how they
fit into our division of causes.
5
First then we observe that some things always come to pass in the same way, and others for the most part. It
is clearly of neither of these that chance is said to be the cause, nor can the 'effect of chance' be identified
with any of the things that come to pass by necessity and always, or for the most part. But as there is a third
class of events besides these twoevents which all say are 'by chance'it is plain that there is such a thing as
chance and spontaneity; for we know that things of this kind are due to chance and that things due to chance
are of this kind.
But, secondly, some events are for the sake of something, others not. Again, some of the former class are in
accordance with deliberate intention, others not, but both are in the class of things which are for the sake of
something. Hence it is clear that even among the things which are outside the necessary and the normal, there
are some in connexion withwhich the phrase 'for the sake of something' is applicable. (Events that are for the
sake of something include whatever may be done as a result of thought or of nature.) Things of this kind,
then, when they come to pass incidental are said to be 'by chance'. For just as a thing is something either in
virtue of itself or incidentally, so may it be a cause. For instance, the housebuilding faculty is in virtue of
itself the cause of a house, whereas the pale or the musical is the incidental cause. That which is per se cause
of the effect is determinate, but the incidental cause is indeterminable, for the possible attributes of an
individual are innumerable. To resume then; when a thing of this kind comes to pass among events which are
for the sake of something, it is said to be spontaneous or by chance. (The distinction between the two must be
made laterfor the present it is sufficient if it is plain that both are in the sphere of things done for the sake of
something.)
Example: A man is engaged in collecting subscriptions for a feast. He would have gone to such and such a
place for the purpose of getting the money, if he had known. He actually went there for another purpose and
it was only incidentally that he got his money by going there; and this was not due to the fact that he went
there as a rule or necessarily, nor is the end effected (getting the money) a cause present in himselfit belongs
to the class of things that are intentional and the result of intelligent deliberation. It is when these conditions
are satisfied that the man is said to have gone 'by chance'. If he had gone of deliberate purpose and for the
sake of thisif he always or normally went there when he was collecting paymentshe would not be said to
PHYSICS
5 19
Page No 23
have gone 'by chance'.
It is clear then that chance is an incidental cause in the sphere of those actions for the sake of something
which involve purpose. Intelligent reflection, then, and chance are in the same sphere, for purpose implies
intelligent reflection.
It is necessary, no doubt, that the causes of what comes to pass by chance be indefinite; and that is why
chance is supposed to belong to the class of the indefinite and to be inscrutable to man, and why it might be
thought that, in a way, nothing occurs by chance. For all these statements are correct, because they are well
grounded. Things do, in a way, occur by chance, for they occur incidentally and chance is an incidental cause.
But strictly it is not the causewithout qualificationof anything; for instance, a housebuilder is the cause of a
house; incidentally, a fluteplayer may be so.
And the causes of the man's coming and getting the money (when he did not come for the sake of that) are
innumerable. He may have wished to see somebody or been following somebody or avoiding somebody, or
may have gone to see a spectacle. Thus to say that chance is a thing contrary to rule is correct. For 'rule'
applies to what is always true or true for the most part, whereas chance belongs to a third type of event.
Hence, to conclude, since causes of this kind are indefinite, chance too is indefinite. (Yet in some cases one
might raise the question whether any incidental fact might be the cause of the chance occurrence, e.g. of
health the fresh air or the sun's heat may be the cause, but having had one's hair cut cannot; for some
incidental causes are more relevant to the effect than others.)
Chance or fortune is called 'good' when the result is good, 'evil' when it is evil. The terms 'good fortune' and
'ill fortune' are used when either result is of considerable magnitude. Thus one who comes within an ace of
some great evil or great good is said to be fortunate or unfortunate. The mind affirms the essence of the
attribute, ignoring the hair's breadth of difference. Further, it is with reason that good fortune is regarded as
unstable; for chance is unstable, as none of the things which result from it can be invariable or normal.
Both are then, as I have said, incidental causesboth chance and spontaneityin the sphere of things which
are capable of coming to pass not necessarily, nor normally, and with reference to such of these as might
come to pass for the sake of something.
6
They differ in that 'spontaneity' is the wider term. Every result of chance is from what is spontaneous, but not
everything that is from what is spontaneous is from chance.
Chance and what results from chance are appropriate to agents that are capable of good fortune and of moral
action generally. Therefore necessarily chance is in the sphere of moral actions. This is indicated by the fact
that good fortune is thought to be the same, or nearly the same, as happiness, and happiness to be a kind of
moral action, since it is welldoing. Hence what is not capable of moral action cannot do anything by chance.
Thus an inanimate thing or a lower animal or a child cannot do anything by chance, because it is incapable of
deliberate intention; nor can 'good fortune' or 'ill fortune' be ascribed to them, except metaphorically, as
Protarchus, for example, said that the stones of which altars are made are fortunate because they are held in
honour, while their fellows are trodden under foot. Even these things, however, can in a way be affected by
chance, when one who is dealing with them does something to them by chance, but not otherwise.
The spontaneous on the other hand is found both in the lower animals and in many inanimate objects. We
say, for example, that the horse came 'spontaneously', because, though his coming saved him, he did not
come for the sake of safety. Again, the tripod fell 'of itself', because, though when it fell it stood on its feet so
PHYSICS
6 20
Page No 24
as to serve for a seat, it did not fall for the sake of that.
Hence it is clear that events which (1) belong to the general class of things that may come to pass for the sake
of something, (2) do not come to pass for the sake of what actually results, and (3) have an external cause,
may be described by the phrase 'from spontaneity'. These 'spontaneous' events are said to be 'from chance' if
they have the further characteristics of being the objects of deliberate intention and due to agents capable of
that mode of action. This is indicated by the phrase 'in vain', which is used when A which is for the sake of B,
does not result in B. For instance, taking a walk is for the sake of evacuation of the bowels; if this does not
follow after walking, we say that we have walked 'in vain' and that the walking was 'vain'. This implies that
what is naturally the means to an end is 'in vain', when it does not effect the end towards which it was the
natural meansfor it would be absurd for a man to say that he had bathed in vain because the sun was not
eclipsed, since the one was not done with a view to the other. Thus the spontaneous is even according to its
derivation the case in which the thing itself happens in vain. The stone that struck the man did not fall for the
purpose of striking him; therefore it fell spontaneously, because it might have fallen by the action of an agent
and for the purpose of striking. The difference between spontaneity and what results by chance is greatest in
things that come to be by nature; for when anything comes to be contrary to nature, we do not say that it came
to be by chance, but by spontaneity. Yet strictly this too is different from the spontaneous proper; for the
cause of the latter is external, that of the former internal.
We have now explained what chance is and what spontaneity is, and in what they differ from each other.
Both belong to the mode of causation 'source of change', for either some natural or some intelligent agent is
always the cause; but in this sort of causation the number of possible causes is infinite.
Spontaneity and chance are causes of effects which though they might result from intelligence or nature, have
in fact been caused by something incidentally. Now since nothing which is incidental is prior to what is per
se, it is clear that no incidental cause can be prior to a cause per se. Spontaneity and chance, therefore, are
posterior to intelligence and nature. Hence, however true it may be that the heavens are due to spontaneity, it
will still be true that intelligence and nature will be prior causes of this All and of many things in it besides.
7
It is clear then that there are causes, and that the number of them is what we have stated. The number is the
same as that of the things comprehended under the question 'why'. The 'why' is referred ultimately either (1),
in things which do not involve motion, e.g. in mathematics, to the 'what' (to the definition of 'straight line' or
'commensurable', or (2) to what initiated a motion, e.g. 'why did they go to war?because there had been a
raid'; or (3) we are inquiring 'for the sake of what?''that they may rule'; or (4), in the case of things that come
into being, we are looking for the matter. The causes, therefore, are these and so many in number.
Now, the causes being four, it is the business of the physicist to know about them all, and if he refers his
problems back to all of them, he will assign the 'why' in the way proper to his sciencethe matter, the form,
the mover, 'that for the sake of which'. The last three often coincide; for the 'what' and 'that for the sake of
which' are one, while the primary source of motion is the same in species as these (for man generates man),
and so too, in general, are all things which cause movement by being themselves moved; and such as are not
of this kind are no longer inside the province of physics, for they cause motion not by possessing motion or a
source of motion in themselves, but being themselves incapable of motion. Hence there are three branches of
study, one of things which are incapable of motion, the second of things in motion, but indestructible, the
third of destructible things.
The question 'why', then, is answered by reference to the matter, to the form, and to the primary moving
cause. For in respect of coming to be it is mostly in this last way that causes are investigated'what comes to
PHYSICS
7 21
Page No 25
be after what? what was the primary agent or patient?' and so at each step of the series.
Now the principles which cause motion in a physical way are two, of which one is not physical, as it has no
principle of motion in itself. Of this kind is whatever causes movement, not being itself moved, such as (1)
that which is completely unchangeable, the primary reality, and (2) the essence of that which is coming to be,
i.e. the form; for this is the end or 'that for the sake of which'. Hence since nature is for the sake of something,
we must know this cause also. We must explain the 'why' in all the senses of the term, namely, (1) that from
this that will necessarily result ('from this' either without qualification or in most cases); (2) that 'this must be
so if that is to be so' (as the conclusion presupposes the premisses); (3) that this was the essence of the thing;
and (4) because it is better thus (not without qualification, but with reference to the essential nature in each
case).
8
We must explain then (1) that Nature belongs to the class of causes which act for the sake of something; (2)
about the necessary and its place in physical problems, for all writers ascribe things to this cause, arguing that
since the hot and the cold, are of such and such a kind, therefore certain things necessarily are and come to
beand if they mention any other cause (one his 'friendship and strife', another his 'mind'), it is only to touch
on it, and then goodbye to it.
A difficulty presents itself: why should not nature work, not for the sake of something, nor because it is better
so, but just as the sky rains, not in order to make the corn grow, but of necessity? What is drawn up must
cool, and what has been cooled must become water and descend, the result of this being that the corn grows.
Similarly if a man's crop is spoiled on the threshingfloor, the rain did not fall for the sake of thisin order
that the crop might be spoiledbut that result just followed. Why then should it not be the same with the parts
in nature, e.g. that our teeth should come up of necessitythe front teeth sharp, fitted for tearing, the molars
broad and useful for grinding down the foodsince they did not arise for this end, but it was merely a
coincident result; and so with all other parts in which we suppose that there is purpose? Wherever then all the
parts came about just what they would have been if they had come be for an end, such things survived, being
organized spontaneously in a fitting way; whereas those which grew otherwise perished and continue to
perish, as Empedocles says his 'manfaced oxprogeny' did.
Such are the arguments (and others of the kind) which may cause difficulty on this point. Yet it is impossible
that this should be the true view. For teeth and all other natural things either invariably or normally come
about in a given way; but of not one of the results of chance or spontaneity is this true. We do not ascribe to
chance or mere coincidence the frequency of rain in winter, but frequent rain in summer we do; nor heat in
the dogdays, but only if we have it in winter. If then, it is agreed that things are either the result of
coincidence or for an end, and these cannot be the result of coincidence or spontaneity, it follows that they
must be for an end; and that such things are all due to nature even the champions of the theory which is
before us would agree. Therefore action for an end is present in things which come to be and are by nature.
Further, where a series has a completion, all the preceding steps are for the sake of that. Now surely as in
intelligent action, so in nature; and as in nature, so it is in each action, if nothing interferes. Now intelligent
action is for the sake of an end; therefore the nature of things also is so. Thus if a house, e.g. had been a thing
made by nature, it would have been made in the same way as it is now by art; and if things made by nature
were made also by art, they would come to be in the same way as by nature. Each step then in the series is for
the sake of the next; and generally art partly completes what nature cannot bring to a finish, and partly
imitates her. If, therefore, artificial products are for the sake of an end, so clearly also are natural products.
The relation of the later to the earlier terms of the series is the same in both. This is most obvious in the
animals other than man: they make things neither by art nor after inquiry or deliberation. Wherefore people
PHYSICS
8 22
Page No 26
discuss whether it is by intelligence or by some other faculty that these creatures work,spiders, ants, and the
like. By gradual advance in this direction we come to see clearly that in plants too that is produced which is
conducive to the endleaves, e.g. grow to provide shade for the fruit. If then it is both by nature and for an
end that the swallow makes its nest and the spider its web, and plants grow leaves for the sake of the fruit and
send their roots down (not up) for the sake of nourishment, it is plain that this kind of cause is operative in
things which come to be and are by nature. And since 'nature' means two things, the matter and the form, of
which the latter is the end, and since all the rest is for the sake of the end, the form must be the cause in the
sense of 'that for the sake of which'.
Now mistakes come to pass even in the operations of art: the grammarian makes a mistake in writing and the
doctor pours out the wrong dose. Hence clearly mistakes are possible in the operations of nature also. If then
in art there are cases in which what is rightly produced serves a purpose, and if where mistakes occur there
was a purpose in what was attempted, only it was not attained, so must it be also in natural products, and
monstrosities will be failures in the purposive effort. Thus in the original combinations the 'oxprogeny' if
they failed to reach a determinate end must have arisen through the corruption of some principle
corresponding to what is now the seed.
Further, seed must have come into being first, and not straightway the animals: the words 'wholenatured
first...' must have meant seed.
Again, in plants too we find the relation of means to end, though the degree of organization is less. Were
there then in plants also 'oliveheaded vineprogeny', like the 'manheaded oxprogeny', or not? An absurd
suggestion; yet there must have been, if there were such things among animals.
Moreover, among the seeds anything must have come to be at random. But the person who asserts this
entirely does away with 'nature' and what exists 'by nature'. For those things are natural which, by a
continuous movement originated from an internal principle, arrive at some completion: the same completion
is not reached from every principle; nor any chance completion, but always the tendency in each is towards
the same end, if there is no impediment.
The end and the means towards it may come about by chance. We say, for instance, that a stranger has come
by chance, paid the ransom, and gone away, when he does so as if he had come for that purpose, though it
was not for that that he came. This is incidental, for chance is an incidental cause, as I remarked before. But
when an event takes place always or for the most part, it is not incidental or by chance. In natural products the
sequence is invariable, if there is no impediment.
It is absurd to suppose that purpose is not present because we do not observe the agent deliberating. Art does
not deliberate. If the shipbuilding art were in the wood, it would produce the same results by nature. If,
therefore, purpose is present in art, it is present also in nature. The best illustration is a doctor doctoring
himself: nature is like that.
It is plain then that nature is a cause, a cause that operates for a purpose.
9
As regards what is 'of necessity', we must ask whether the necessity is 'hypothetical', or 'simple' as well. The
current view places what is of necessity in the process of production, just as if one were to suppose that the
wall of a house necessarily comes to be because what is heavy is naturally carried downwards and what is
light to the top, wherefore the stones and foundations take the lowest place, with earth above because it is
lighter, and wood at the top of all as being the lightest. Whereas, though the wall does not come to be without
PHYSICS
9 23
Page No 27
these, it is not due to these, except as its material cause: it comes to be for the sake of sheltering and guarding
certain things. Similarly in all other things which involve production for an end; the product cannot come to
be without things which have a necessary nature, but it is not due to these (except as its material); it comes to
be for an end. For instance, why is a saw such as it is? To effect soandso and for the sake of soandso.
This end, however, cannot be realized unless the saw is made of iron. It is, therefore, necessary for it to be of
iron, it we are to have a saw and perform the operation of sawing. What is necessary then, is necessary on a
hypothesis; it is not a result necessarily determined by antecedents. Necessity is in the matter, while 'that for
the sake of which' is in the definition.
Necessity in mathematics is in a way similar to necessity in things which come to be through the operation of
nature. Since a straight line is what it is, it is necessary that the angles of a triangle should equal two right
angles. But not conversely; though if the angles are not equal to two right angles, then the straight line is not
what it is either. But in things which come to be for an end, the reverse is true. If the end is to exist or does
exist, that also which precedes it will exist or does exist; otherwise just as there, ifthe conclusion is not true,
the premiss will not be true, so here the end or 'that for the sake of which' will not exist. For this too is itself a
startingpoint, but of the reasoning, not of the action; while in mathematics the startingpoint is the
startingpoint of the reasoning only, as there is no action. If then there is to be a house, suchandsuch things
must be made or be there already or exist, or generally the matter relative to the end, bricks and stones if it is
a house. But the end is not due to these except as the matter, nor will it come to exist because of them. Yet if
they do not exist at all, neither will the house, or the sawthe former in the absence of stones, the latter in the
absence of ironjust as in the other case the premisses will not be true, if the angles of the triangle are not
equal to two right angles.
The necessary in nature, then, is plainly what we call by the name of matter, and the changes in it. Both
causes must be stated by the physicist, but especially the end; for that is the cause of the matter, not vice
versa; and the end is 'that for the sake of which', and the beginning starts from the definition or essence; as in
artificial products, since a house is of suchandsuch a kind, certain things must necessarily come to be or be
there already, or since health is this, these things must necessarily come to be or be there already. Similarly if
man is this, then these; if these, then those. Perhaps the necessary is present also in the definition. For if one
defines the operation of sawing as being a certain kind of dividing, then this cannot come about unless the
saw has teeth of a certain kind; and these cannot be unless it is of iron. For in the definition too there are
some parts that are, as it were, its matter.
Book III
1
NATURE has been defined as a 'principle of motion and change', and it is the subject of our inquiry. We must
therefore see that we understand the meaning of 'motion'; for if it were unknown, the meaning of 'nature' too
would be unknown.
When we have determined the nature of motion, our next task will be to attack in the same way the terms
which are involved in it. Now motion is supposed to belong to the class of things which are continuous; and
the infinite presents itself first in the continuousthat is how it comes about that 'infinite' is often used in
definitions of the continuous ('what is infinitely divisible is continuous'). Besides these, place, void, and time
are thought to be necessary conditions of motion.
Clearly, then, for these reasons and also because the attributes mentioned are common to, and coextensive
with, all the objects of our science, we must first take each of them in hand and discuss it. For the
investigation of special attributes comes after that of the common attributes.
PHYSICS
Book III 24
Page No 28
To begin then, as we said, with motion.
We may start by distinguishing (1) what exists in a state of fulfilment only, (2) what exists as potential, (3)
what exists as potential and also in fulfilmentone being a 'this', another 'so much', a third 'such', and
similarly in each of the other modes of the predication of being.
Further, the word 'relative' is used with reference to (1) excess and defect, (2) agent and patient and generally
what can move and what can be moved. For 'what can cause movement' is relative to 'what can be moved',
and vice versa.
Again, there is no such thing as motion over and above the things. It is always with respect to substance or to
quantity or to quality or to place that what changes changes. But it is impossible, as we assert, to find
anything common to these which is neither 'this' nor quantum nor quale nor any of the other predicates.
Hence neither will motion and change have reference to something over and above the things mentioned, for
there is nothing over and above them.
Now each of these belongs to all its subjects in either of two ways: namely (1) substancethe one is positive
form, the other privation; (2) in quality, white and black; (3) in quantity, complete and incomplete; (4) in
respect of locomotion, upwards and downwards or light and heavy. Hence there are as many types of motion
or change as there are meanings of the word 'is'.
We have now before us the distinctions in the various classes of being between what is full real and what is
potential.
Def. The fulfilment of what exists potentially, in so far as it exists potentially, is motionnamely, of what is
alterable qua alterable, alteration: of what can be increased and its opposite what can be decreased (there is no
common name), increase and decrease: of what can come to be and can pass away, coming to he and passing
away: of what can be carried along, locomotion.
Examples will elucidate this definition of motion. When the buildable, in so far as it is just that, is fully real,
it is being built, and this is building. Similarly, learning, doctoring, rolling, leaping, ripening, ageing.
The same thing, if it is of a certain kind, can be both potential and fully real, not indeed at the same time or
not in the same respect, but e.g. potentially hot and actually cold. Hence at once such things will act and be
acted on by one another in many ways: each of them will be capable at the same time of causing alteration
and of being altered. Hence, too, what effects motion as a physical agent can be moved: when a thing of this
kind causes motion, it is itself also moved. This, indeed, has led some people to suppose that every mover is
moved. But this question depends on another set of arguments, and the truth will be made clear later. is
possible for a thing to cause motion, though it is itself incapable of being moved.
It is the fulfilment of what is potential when it is already fully real and operates not as itself but as movable,
that is motion. What I mean by 'as' is this: Bronze is potentially a statue. But it is not the fulfilment of bronze
as bronze which is motion. For 'to be bronze' and 'to be a certain potentiality' are not the same.
If they were identical without qualification, i.e. in definition, the fulfilment of bronze as bronze would have
been motion. But they are not the same, as has been said. (This is obvious in contraries. 'To be capable of
health' and 'to be capable of illness' are not the same, for if they were there would be no difference between
being ill and being well. Yet the subject both of health and of sicknesswhether it is humour or bloodis one
and the same.)
PHYSICS
Book III 25
Page No 29
We can distinguish, then, between the twojust as, to give another example, 'colour' and visible' are
differentand clearly it is the fulfilment of what is potential as potential that is motion. So this, precisely, is
motion.
Further it is evident that motion is an attribute of a thing just when it is fully real in this way, and neither
before nor after. For each thing of this kind is capable of being at one time actual, at another not. Take for
instance the buildable as buildable. The actuality of the buildable as buildable is the process of building. For
the actuality of the buildable must be either this or the house. But when there is a house, the buildable is no
longer buildable. On the other hand, it is the buildable which is being built. The process then of being built
must be the kind of actuality required But building is a kind of motion, and the same account will apply to the
other kinds also.
2
The soundness of this definition is evident both when we consider the accounts of motion that the others have
given, and also from the difficulty of defining it otherwise.
One could not easily put motion and change in another genusthis is plain if we consider where some people
put it; they identify motion with or 'inequality' or 'not being'; but such things are not necessarily moved,
whether they are 'different' or 'unequal' or 'nonexistent'; Nor is change either to or from these rather than to
or from their opposites.
The reason why they put motion into these genera is that it is thought to be something indefinite, and the
principles in the second column are indefinite because they are privative: none of them is either 'this' or 'such'
or comes under any of the other modes of predication. The reason in turn why motion is thought to be
indefinite is that it cannot be classed simply as a potentiality or as an actualitya thing that is merely capable
of having a certain size is not undergoing change, nor yet a thing that is actually of a certain size, and motion
is thought to be a sort of actuality, but incomplete, the reason for this view being that the potential whose
actuality it is is incomplete. This is why it is hard to grasp what motion is. It is necessary to class it with
privation or with potentiality or with sheer actuality, yet none of these seems possible. There remains then the
suggested mode of definition, namely that it is a sort of actuality, or actuality of the kind described, hard to
grasp, but not incapable of existing.
The mover too is moved, as has been saidevery mover, that is, which is capable of motion, and whose
immobility is restwhen a thing is subject to motion its immobility is rest. For to act on the movable as such
is just to move it. But this it does by contact, so that at the same time it is also acted on. Hence we can define
motion as the fulfilment of the movable qua movable, the cause of the attribute being contact with what can
move so that the mover is also acted on. The mover or agent will always be the vehicle of a form, either a
'this' or 'such', which, when it acts, will be the source and cause of the change, e.g. the fullformed man
begets man from what is potentially man.
3
The solution of the difficulty that is raised about the motionwhether it is in the movableis plain. It is the
fulfilment of this potentiality, and by the action of that which has the power of causing motion; and the
actuality of that which has the power of causing motion is not other than the actuality of the movable, for it
must be the fulfilment of both. A thing is capable of causing motion because it can do this, it is a mover
because it actually does it. But it is on the movable that it is capable of acting. Hence there is a single
actuality of both alike, just as one to two and two to one are the same interval, and the steep ascent and the
steep descent are onefor these are one and the same, although they can be described in different ways. So it
PHYSICS
2 26
Page No 30
is with the mover and the moved.
This view has a dialectical difficulty. Perhaps it is necessary that the actuality of the agent and that of the
patient should not be the same. The one is 'agency' and the other 'patiency'; and the outcome and completion
of the one is an 'action', that of the other a 'passion'. Since then they are both motions, we may ask: in what
are they, if they are different? Either (a) both are in what is acted on and moved, or (b) the agency is in the
agent and the patiency in the patient. (If we ought to call the latter also 'agency', the word would be used in
two senses.)
Now, in alternative (b), the motion will be in the mover, for the same statement will hold of 'mover' and
'moved'. Hence either every mover will be moved, or, though having motion, it will not be moved.
If on the other hand (a) both are in what is moved and acted onboth the agency and the patiency (e.g. both
teaching and learning, though they are two, in the learner), then, first, the actuality of each will not be present
in each, and, a second absurdity, a thing will have two motions at the same time. How will there be two
alterations of quality in one subject towards one definite quality? The thing is impossible: the actualization
will be one.
But (some one will say) it is contrary to reason to suppose that there should be one identical actualization of
two things which are different in kind. Yet there will be, if teaching and learning are the same, and agency
and patiency. To teach will be the same as to learn, and to act the same as to be acted onthe teacher will
necessarily be learning everything that he teaches, and the agent will be acted on. One may reply:
(1) It is not absurd that the actualization of one thing should be in another. Teaching is the activity of a person
who can teach, yet the operation is performed on some patientit is not cut adrift from a subject, but is of A
on B.
(2) There is nothing to prevent two things having one and the same actualization, provided the actualizations
are not described in the same way, but are related as what can act to what is acting.
(3) Nor is it necessary that the teacher should learn, even if to act and to be acted on are one and the same,
provided they are not the same in definition (as 'raiment' and 'dress'), but are the same merely in the sense in
which the road from Thebes to Athens and the road from Athens to Thebes are the same, as has been
explained above. For it is not things which are in a way the same that have all their attributes the same, but
only such as have the same definition. But indeed it by no means follows from the fact that teaching is the
same as learning, that to learn is the same as to teach, any more than it follows from the fact that there is one
distance between two things which are at a distance from each other, that the two vectors AB and BA, are one
and the same. To generalize, teaching is not the same as learning, or agency as patiency, in the full sense,
though they belong to the same subject, the motion; for the 'actualization of X in Y' and the 'actualization of
Y through the action of X' differ in definition.
What then Motion is, has been stated both generally and particularly. It is not difficult to see how each of its
types will be definedalteration is the fulfillment of the alterable qua alterable (or, more scientifically, the
fulfilment of what can act and what can be acted on, as such)generally and again in each particular case,
building, healing, A similar definition will apply to each of the other kinds of motion.
4
The science of nature is concerned with spatial magnitudes and motion and time, and each of these at least is
necessarily infinite or finite, even if some things dealt with by the science are not, e.g. a quality or a pointit
PHYSICS
4 27
Page No 31
is not necessary perhaps that such things should be put under either head. Hence it is incumbent on the person
who specializes in physics to discuss the infinite and to inquire whether there is such a thing or not, and, if
there is, what it is.
The appropriateness to the science of this problem is clearly indicated. All who have touched on this kind of
science in a way worth considering have formulated views about the infinite, and indeed, to a man, make it a
principle of things.
(1) Some, as the Pythagoreans and Plato, make the infinite a principle in the sense of a selfsubsistent
substance, and not as a mere attribute of some other thing. Only the Pythagoreans place the infinite among
the objects of sense (they do not regard number as separable from these), and assert that what is outside the
heaven is infinite. Plato, on the other hand, holds that there is no body outside (the Forms are not outside
because they are nowhere),yet that the infinite is present not only in the objects of sense but in the Forms
also.
Further, the Pythagoreans identify the infinite with the even. For this, they say, when it is cut off and shut in
by the odd, provides things with the element of infinity. An indication of this is what happens with numbers.
If the gnomons are placed round the one, and without the one, in the one construction the figure that results is
always different, in the other it is always the same. But Plato has two infinites, the Great and the Small.
The physicists, on the other hand, all of them, always regard the infinite as an attribute of a substance which
is different from it and belongs to the class of the socalled elementswater or air or what is intermediate
between them. Those who make them limited in number never make them infinite in amount. But those who
make the elements infinite in number, as Anaxagoras and Democritus do, say that the infinite is continuous
by contactcompounded of the homogeneous parts according to the one, of the seedmass of the atomic
shapes according to the other.
Further, Anaxagoras held that any part is a mixture in the same way as the All, on the ground of the observed
fact that anything comes out of anything. For it is probably for this reason that he maintains that once upon a
time all things were together. (This flesh and this bone were together, and so of any thing: therefore all
things: and at the same time too.) For there is a beginning of separation, not only for each thing, but for all.
Each thing that comes to be comes from a similar body, and there is a coming to be of all things, though not,
it is true, at the same time. Hence there must also be an origin of coming to be. One such source there is
which he calls Mind, and Mind begins its work of thinking from some startingpoint. So necessarily all
things must have been together at a certain time, and must have begun to be moved at a certain time.
Democritus, for his part, asserts the contrary, namely that no element arises from another element.
Nevertheless for him the common body is a source of all things, differing from part to part in size and in
shape.
It is clear then from these considerations that the inquiry concerns the physicist. Nor is it without reason that
they all make it a principle or source. We cannot say that the infinite has no effect, and the only effectiveness
which we can ascribe to it is that of a principle. Everything is either a source or derived from a source. But
there cannot be a source of the infinite or limitless, for that would be a limit of it. Further, as it is a beginning,
it is both uncreatable and indestructible. For there must be a point at which what has come to be reaches
completion, and also a termination of all passing away. That is why, as we say, there is no principle of this,
but it is this which is held to be the principle of other things, and to encompass all and to steer all, as those
assert who do not recognize, alongside the infinite, other causes, such as Mind or Friendship. Further they
identify it with the Divine, for it is 'deathless and imperishable' as Anaximander says, with the majority of the
physicists.
PHYSICS
4 28
Page No 32
Belief in the existence of the infinite comes mainly from five considerations:
(1) From the nature of timefor it is infinite.
(2) From the division of magnitudesfor the mathematicians also use the notion of the infinite.
(3) If coming to be and passing away do not give out, it is only because that from which things come to be is
infinite.
(4) Because the limited always finds its limit in something, so that there must be no limit, if everything is
always limited by something different from itself.
(5) Most of all, a reason which is peculiarly appropriate and presents the difficulty that is felt by
everybodynot only number but also mathematical magnitudes and what is outside the heaven are supposed
to be infinite because they never give out in our thought.
The last fact (that what is outside is infinite) leads people to suppose that body also is infinite, and that there
is an infinite number of worlds. Why should there be body in one part of the void rather than in another?
Grant only that mass is anywhere and it follows that it must be everywhere. Also, if void and place are
infinite, there must be infinite body too, for in the case of eternal things what may be must be. But the
problem of the infinite is difficult: many contradictions result whether we suppose it to exist or not to exist. If
it exists, we have still to ask how it exists; as a substance or as the essential attribute of some entity? Or in
neither way, yet none the less is there something which is infinite or some things which are infinitely many?
The problem, however, which specially belongs to the physicist is to investigate whether there is a sensible
magnitude which is infinite.
We must begin by distinguishing the various senses in which the term 'infinite' is used.
(1) What is incapable of being gone through, because it is not in its nature to be gone through (the sense in
which the voice is 'invisible').
(2) What admits of being gone through, the process however having no termination, or what scarcely admits
of being gone through.
(3) What naturally admits of being gone through, but is not actually gone through or does not actually reach
an end.
Further, everything that is infinite may be so in respect of addition or division or both.
5
Now it is impossible that the infinite should be a thing which is itself infinite, separable from sensible objects.
If the infinite is neither a magnitude nor an aggregate, but is itself a substance and not an attribute, it will be
indivisible; for the divisible must be either a magnitude or an aggregate. But if indivisible, then not infinite,
except in the sense (1) in which the voice is 'invisible'. But this is not the sense in which it is used by those
who say that the infinite exists, nor that in which we are investigating it, namely as (2) 'that which cannot be
gone through'. But if the infinite exists as an attribute, it would not be, qua infinite an element in substances,
any more than the invisible would be an element of speech, though the voice is invisible.
PHYSICS
5 29
Page No 33
Further, how can the infinite be itself any thing, unless both number and magnitude, of which it is an essential
attribute, exist in that way? If they are not substances, a fortiori the infinite is not.
It is plain, too, that the infinite cannot be an actual thing and a substance and principle. For any part of it that
is taken will be infinite, if it has parts: for 'to be infinite' and 'the infinite' are the same, if it is a substance and
not predicated of a subject. Hence it will be either indivisible or divisible into infinites. But the same thing
cannot be many infinites. (Yet just as part of air is air, so a part of the infinite would be infinite, if it is
supposed to be a substance and principle.) Therefore the infinite must be without parts and indivisible. But
this cannot be true of what is infinite in full completion: for it must be a definite quantity.
Suppose then that infinity belongs to substance as an attribute. But, if so, it cannot, as we have said, be
described as a principle, but rather that of which it is an attributethe air or the even number.
Thus the view of those who speak after the manner of the Pythagoreans is absurd. With the same breath they
treat the infinite as substance, and divide it into parts.
This discussion, however, involves the more general question whether the infinite can be present in
mathematical objects and things which are intelligible and do not have extension, as well as among sensible
objects. Our inquiry (as physicists) is limited to its special subjectmatter, the objects of sense, and we have
to ask whether there is or is not among them a body which is infinite in the direction of increase.
We may begin with a dialectical argument and show as follows that there is no such thing. If 'bounded by a
surface' is the definition of body there cannot be an infinite body either intelligible or sensible. Nor can
number taken in abstraction be infinite, for number or that which has number is numerable. If then the
numerable can be numbered, it would also be possible to go through the infinite.
If, on the other hand, we investigate the question more in accordance with principles appropriate to physics,
we are led as follows to the same result.
The infinite body must be either (1) compound, or (2) simple; yet neither alternative is possible.
(1) Compound the infinite body will not be, if the elements are finite in number. For they must be more than
one, and the contraries must always balance, and no one of them can be infinite. If one of the bodies falls in
any degree short of the other in potencysuppose fire is finite in amount while air is infinite and a given
quantity of fire exceeds in power the same amount of air in any ratio provided it is numerically definitethe
infinite body will obviously prevail over and annihilate the finite body. On the other hand, it is impossible
that each should be infinite. 'Body' is what has extension in all directions and the infinite is what is
boundlessly extended, so that the infinite body would be extended in all directions ad infinitum.
Nor (2) can the infinite body be one and simple, whether it is, as some hold, a thing over and above the
elements (from which they generate the elements) or is not thus qualified.
(a) We must consider the former alternative; for there are some people who make this the infinite, and not air
or water, in order that the other elements may not be annihilated by the element which is infinite. They have
contrariety with each otherair is cold, water moist, fire hot; if one were infinite, the others by now would
have ceased to be. As it is, they say, the infinite is different from them and is their source.
It is impossible, however, that there should be such a body; not because it is infinite on that point a general
proof can be given which applies equally to all, air, water, or anything elsebut simply because there is, as a
matter of fact, no such sensible body, alongside the socalled elements. Everything can be resolved into the
elements of which it is composed. Hence the body in question would have been present in our world here,
PHYSICS
5 30
Page No 34
alongside air and fire and earth and water: but nothing of the kind is observed.
(b) Nor can fire or any other of the elements be infinite. For generally, and apart from the question of how
any of them could be infinite, the All, even if it were limited, cannot either be or become one of them, as
Heraclitus says that at some time all things become fire. (The same argument applies also to the one which
the physicists suppose to exist alongside the elements: for everything changes from contrary to contrary, e.g.
from hot to cold).
The preceding consideration of the various cases serves to show us whether it is or is not possible that there
should be an infinite sensible body. The following arguments give a general demonstration that it is not
possible.
It is the nature of every kind of sensible body to be somewhere, and there is a place appropriate to each, the
same for the part and for the whole, e.g. for the whole earth and for a single clod, and for fire and for a spark.
Suppose (a) that the infinite sensible body is homogeneous. Then each part will be either immovable or
always being carried along. Yet neither is possible. For why downwards rather than upwards or in any other
direction? I mean, e.g, if you take a clod, where will it be moved or where will it be at rest? For ex hypothesi
the place of the body akin to it is infinite. Will it occupy the whole place, then? And how? What then will be
the nature of its rest and of its movement, or where will they be? It will either be at home everywherethen it
will not be moved; or it will be moved everywherethen it will not come to rest.
But if (b) the All has dissimilar parts, the proper places of the parts will be dissimilar also, and the body of
the All will have no unity except that of contact. Then, further, the parts will be either finite or infinite in
variety of kind. (i) Finite they cannot be, for if the All is to be infinite, some of them would have to be
infinite, while the others were not, e.g. fire or water will be infinite. But, as we have seen before, such an
element would destroy what is contrary to it. (This indeed is the reason why none of the physicists made fire
or earth the one infinite body, but either water or air or what is intermediate between them, because the abode
of each of the two was plainly determinate, while the others have an ambiguous place between up and down.)
But (ii) if the parts are infinite in number and simple, their proper places too will be infinite in number, and
the same will be true of the elements themselves. If that is impossible, and the places are finite, the whole too
must be finite; for the place and the body cannot but fit each other. Neither is the whole place larger than
what can be filled by the body (and then the body would no longer be infinite), nor is the body larger than the
place; for either there would be an empty space or a body whose nature it is to be nowhere.
Anaxagoras gives an absurd account of why the infinite is at rest. He says that the infinite itself is the cause
of its being fixed. This because it is in itself, since nothing else contains iton the assumption that wherever
anything is, it is there by its own nature. But this is not true: a thing could be somewhere by compulsion, and
not where it is its nature to be.
Even if it is true as true can be that the whole is not moved (for what is fixed by itself and is in itself must be
immovable), yet we must explain why it is not its nature to be moved. It is not enough just to make this
statement and then decamp. Anything else might be in a state of rest, but there is no reason why it should not
be its nature to be moved. The earth is not carried along, and would not be carried along if it were infinite,
provided it is held together by the centre. But it would not be because there was no other region in which it
could be carried along that it would remain at the centre, but because this is its nature. Yet in this case also
we may say that it fixes itself. If then in the case of the earth, supposed to be infinite, it is at rest, not because
it is infinite, but because it has weight and what is heavy rests at the centre and the earth is at the centre,
similarly the infinite also would rest in itself, not because it is infinite and fixes itself, but owing to some
other cause.
PHYSICS
5 31
Page No 35
Another difficulty emerges at the same time. Any part of the infinite body ought to remain at rest. Just as the
infinite remains at rest in itself because it fixes itself, so too any part of it you may take will remain in itself.
The appropriate places of the whole and of the part are alike, e.g. of the whole earth and of a clod the
appropriate place is the lower region; of fire as a whole and of a spark, the upper region. If, therefore, to be in
itself is the place of the infinite, that also will be appropriate to the part. Therefore it will remain in itself.
In general, the view that there is an infinite body is plainly incompatible with the doctrine that there is
necessarily a proper place for each kind of body, if every sensible body has either weight or lightness, and if a
body has a natural locomotion towards the centre if it is heavy, and upwards if it is light. This would need to
be true of the infinite also. But neither character can belong to it: it cannot be either as a whole, nor can it be
half the one and half the other. For how should you divide it? or how can the infinite have the one part up and
the other down, or an extremity and a centre?
Further, every sensible body is in place, and the kinds or differences of place are updown, beforebehind,
rightleft; and these distinctions hold not only in relation to us and by arbitrary agreement, but also in the
whole itself. But in the infinite body they cannot exist. In general, if it is impossible that there should be an
infinite place, and if every body is in place, there cannot be an infinite body.
Surely what is in a special place is in place, and what is in place is in a special place. Just, then, as the infinite
cannot be quantitythat would imply that it has a particular quantity, e,g, two or three cubits; quantity just
means theseso a thing's being in place means that it is somewhere, and that is either up or down or in some
other of the six differences of position: but each of these is a limit.
It is plain from these arguments that there is no body which is actually infinite.
6
But on the other hand to suppose that the infinite does not exist in any way leads obviously to many
impossible consequences: there will be a beginning and an end of time, a magnitude will not be divisible into
magnitudes, number will not be infinite. If, then, in view of the above considerations, neither alternative
seems possible, an arbiter must be called in; and clearly there is a sense in which the infinite exists and
another in which it does not.
We must keep in mind that the word 'is' means either what potentially is or what fully is. Further, a thing is
infinite either by addition or by division.
Now, as we have seen, magnitude is not actually infinite. But by division it is infinite. (There is no difficulty
in refuting the theory of indivisible lines.) The alternative then remains that the infinite has a potential
existence.
But the phrase 'potential existence' is ambiguous. When we speak of the potential existence of a statue we
mean that there will be an actual statue. It is not so with the infinite. There will not be an actual infinite. The
word 'is' has many senses, and we say that the infinite 'is' in the sense in which we say 'it is day' or 'it is the
games', because one thing after another is always coming into existence. For of these things too the
distinction between potential and actual existence holds. We say that there are Olympic games, both in the
sense that they may occur and that they are actually occurring.
The infinite exhibits itself in different waysin time, in the generations of man, and in the division of
magnitudes. For generally the infinite has this mode of existence: one thing is always being taken after
another, and each thing that is taken is always finite, but always different. Again, 'being' has more than one
PHYSICS
6 32
Page No 36
sense, so that we must not regard the infinite as a 'this', such as a man or a horse, but must suppose it to exist
in the sense in which we speak of the day or the games as existing things whose being has not come to them
like that of a substance, but consists in a process of coming to be or passing away; definite if you like at each
stage, yet always different.
But when this takes place in spatial magnitudes, what is taken perists, while in the succession of time and of
men it takes place by the passing away of these in such a way that the source of supply never gives out.
In a way the infinite by addition is the same thing as the infinite by division. In a finite magnitude, the infinite
by addition comes about in a way inverse to that of the other. For in proportion as we see division going on,
in the same proportion we see addition being made to what is already marked off. For if we take a
determinate part of a finite magnitude and add another part determined by the same ratio (not taking in the
same amount of the original whole), and so on, we shall not traverse the given magnitude. But if we increase
the ratio of the part, so as always to take in the same amount, we shall traverse the magnitude, for every finite
magnitude is exhausted by means of any determinate quantity however small.
The infinite, then, exists in no other way, but in this way it does exist, potentially and by reduction. It exists
fully in the sense in which we say 'it is day' or 'it is the games'; and potentially as matter exists, not
independently as what is finite does.
By addition then, also, there is potentially an infinite, namely, what we have described as being in a sense the
same as the infinite in respect of division. For it will always be possible to take something ah extra. Yet the
sum of the parts taken will not exceed every determinate magnitude, just as in the direction of division every
determinate magnitude is surpassed in smallness and there will be a smaller part.
But in respect of addition there cannot be an infinite which even potentially exceeds every assignable
magnitude, unless it has the attribute of being actually infinite, as the physicists hold to be true of the body
which is outside the world, whose essential nature is air or something of the kind. But if there cannot be in
this way a sensible body which is infinite in the full sense, evidently there can no more be a body which is
potentially infinite in respect of addition, except as the inverse of the infinite by division, as we have said. It
is for this reason that Plato also made the infinites two in number, because it is supposed to be possible to
exceed all limits and to proceed ad infinitum in the direction both of increase and of reduction. Yet though he
makes the infinites two, he does not use them. For in the numbers the infinite in the direction of reduction is
not present, as the monad is the smallest; nor is the infinite in the direction of increase, for the parts number
only up to the decad.
The infinite turns out to be the contrary of what it is said to be. It is not what has nothing outside it that is
infinite, but what always has something outside it. This is indicated by the fact that rings also that have no
bezel are described as 'endless', because it is always possible to take a part which is outside a given part. The
description depends on a certain similarity, but it is not true in the full sense of the word. This condition alone
is not sufficient: it is necessary also that the next part which is taken should never be the same. In the circle,
the latter condition is not satisfied: it is only the adjacent part from which the new part is different.
Our definition then is as follows:
A quantity is infinite if it is such that we can always take a part outside what has been already taken. On the
other hand, what has nothing outside it is complete and whole. For thus we define the wholethat from which
nothing is wanting, as a whole man or a whole box. What is true of each particular is true of the whole as
suchthe whole is that of which nothing is outside. On the other hand that from which something is absent
and outside, however small that may be, is not 'all'. 'Whole' and 'complete' are either quite identical or closely
akin. Nothing is complete (teleion) which has no end (telos); and the end is a limit.
PHYSICS
6 33
Page No 37
Hence Parmenides must be thought to have spoken better than Melissus. The latter says that the whole is
infinite, but the former describes it as limited, 'equally balanced from the middle'. For to connect the infinite
with the all and the whole is not like joining two pieces of string; for it is from this they get the dignity they
ascribe to the infiniteits containing all things and holding the all in itselffrom its having a certain similarity
to the whole. It is in fact the matter of the completeness which belongs to size, and what is potentially a
whole, though not in the full sense. It is divisible both in the direction of reduction and of the inverse
addition. It is a whole and limited; not, however, in virtue of its own nature, but in virtue of what is other than
it. It does not contain, but, in so far as it is infinite, is contained. Consequently, also, it is unknowable, qua
infinite; for the matter has no form. (Hence it is plain that the infinite stands in the relation of part rather than
of whole. For the matter is part of the whole, as the bronze is of the bronze statue.) If it contains in the case of
sensible things, in the case of intelligible things the great and the small ought to contain them. But it is absurd
and impossible to suppose that the unknowable and indeterminate should contain and determine.
7
It is reasonable that there should not be held to be an infinite in respect of addition such as to surpass every
magnitude, but that there should be thought to be such an infinite in the direction of division. For the matter
and the infinite are contained inside what contains them, while it is the form which contains. It is natural too
to suppose that in number there is a limit in the direction of the minimum, and that in the other direction
every assigned number is surpassed. In magnitude, on the contrary, every assigned magnitude is surpassed in
the direction of smallness, while in the other direction there is no infinite magnitude. The reason is that what
is one is indivisible whatever it may be, e.g. a man is one man, not many. Number on the other hand is a
plurality of 'ones' and a certain quantity of them. Hence number must stop at the indivisible: for 'two' and
'three' are merely derivative terms, and so with each of the other numbers. But in the direction of largeness it
is always possible to think of a larger number: for the number of times a magnitude can be bisected is infinite.
Hence this infinite is potential, never actual: the number of parts that can be taken always surpasses any
assigned number. But this number is not separable from the process of bisection, and its infinity is not a
permanent actuality but consists in a process of coming to be, like time and the number of time.
With magnitudes the contrary holds. What is continuous is divided ad infinitum, but there is no infinite in the
direction of increase. For the size which it can potentially be, it can also actually be. Hence since no sensible
magnitude is infinite, it is impossible to exceed every assigned magnitude; for if it were possible there would
be something bigger than the heavens.
The infinite is not the same in magnitude and movement and time, in the sense of a single nature, but its
secondary sense depends on its primary sense, i.e. movement is called infinite in virtue of the magnitude
covered by the movement (or alteration or growth), and time because of the movement. (I use these terms for
the moment. Later I shall explain what each of them means, and also why every magnitude is divisible into
magnitudes.)
Our account does not rob the mathematicians of their science, by disproving the actual existence of the
infinite in the direction of increase, in the sense of the untraversable. In point of fact they do not need the
infinite and do not use it. They postulate only that the finite straight line may be produced as far as they wish.
It is possible to have divided in the same ratio as the largest quantity another magnitude of any size you like.
Hence, for the purposes of proof, it will make no difference to them to have such an infinite instead, while its
existence will be in the sphere of real magnitudes.
In the fourfold scheme of causes, it is plain that the infinite is a cause in the sense of matter, and that its
essence is privation, the subject as such being what is continuous and sensible. All the other thinkers, too,
evidently treat the infinite as matterthat is why it is inconsistent in them to make it what contains, and not
PHYSICS
7 34
Page No 38
what is contained.
8
It remains to dispose of the arguments which are supposed to support the view that the infinite exists not only
potentially but as a separate thing. Some have no cogency; others can be met by fresh objections that are
valid.
(1) In order that coming to be should not fail, it is not necessary that there should be a sensible body which is
actually infinite. The passing away of one thing may be the coming to be of another, the All being limited.
(2) There is a difference between touching and being limited. The former is relative to something and is the
touching of something (for everything that touches touches something), and further is an attribute of some
one of the things which are limited. On the other hand, what is limited is not limited in relation to anything.
Again, contact is not necessarily possible between any two things taken at random.
(3) To rely on mere thinking is absurd, for then the excess or defect is not in the thing but in the thought. One
might think that one of us is bigger than he is and magnify him ad infinitum. But it does not follow that he is
bigger than the size we are, just because some one thinks he is, but only because he is the size he is. The
thought is an accident.
(a) Time indeed and movement are infinite, and also thinking, in the sense that each part that is taken passes
in succession out of existence.
(b) Magnitude is not infinite either in the way of reduction or of magnification in thought.
This concludes my account of the way in which the infinite exists, and of the way in which it does not exist,
and of what it is.
Book IV
1
THE physicist must have a knowledge of Place, too, as well as of the infinitenamely, whether there is such a
thing or not, and the manner of its existence and what it isboth because all suppose that things which exist
are somewhere (the nonexistent is nowherewhere is the goatstag or the sphinx?), and because 'motion'
in its most general and primary sense is change of place, which we call 'locomotion'.
The question, what is place? presents many difficulties. An examination of all the relevant facts seems to lead
to divergent conclusions. Moreover, we have inherited nothing from previous thinkers, whether in the way of
a statement of difficulties or of a solution.
The existence of place is held to be obvious from the fact of mutual replacement. Where water now is, there
in turn, when the water has gone out as from a vessel, air is present. When therefore another body occupies
this same place, the place is thought to be different from all the bodies which come to be in it and replace one
another. What now contains air formerly contained water, so that clearly the place or space into which and
out of which they passed was something different from both.
Further, the typical locomotions of the elementary natural bodiesnamely, fire, earth, and the likeshow not
only that place is something, but also that it exerts a certain influence. Each is carried to its own place, if it is
PHYSICS
8 35
Page No 39
not hindered, the one up, the other down. Now these are regions or kinds of placeup and down and the rest
of the six directions. Nor do such distinctions (up and down and right and left, hold only in relation to us. To
us they are not always the same but change with the direction in which we are turned: that is why the same
thing may be both right and left, up and down, before and behind. But in nature each is distinct, taken apart
by itself. It is not every chance direction which is 'up', but where fire and what is light are carried; similarly,
too, 'down' is not any chance direction but where what has weight and what is made of earth are carriedthe
implication being that these places do not differ merely in relative position, but also as possessing distinct
potencies. This is made plain also by the objects studied by mathematics. Though they have no real place,
they nevertheless, in respect of their position relatively to us, have a right and left as attributes ascribed to
them only in consequence of their relative position, not having by nature these various characteristics. Again,
the theory that the void exists involves the existence of place: for one would define void as place bereft of
body.
These considerations then would lead us to suppose that place is something distinct from bodies, and that
every sensible body is in place. Hesiod too might be held to have given a correct account of it when he made
chaos first. At least he says:
'First of all things came chaos to being, then broadbreasted earth,' implying that things need to have space
first, because he thought, with most people, that everything is somewhere and in place. If this is its nature, the
potency of place must be a marvellous thing, and take precedence of all other things. For that without which
nothing else can exist, while it can exist without the others, must needs be first; for place does not pass out of
existence when the things in it are annihilated.
True, but even if we suppose its existence settled, the question of its nature presents difficultywhether it is
some sort of 'bulk' of body or some entity other than that, for we must first determine its genus.
(1) Now it has three dimensions, length, breadth, depth, the dimensions by which all body also is bounded.
But the place cannot be body; for if it were there would be two bodies in the same place.
(2) Further, if body has a place and space, clearly so too have surface and the other limits of body; for the
same statement will apply to them: where the bounding planes of the water were, there in turn will be those of
the air. But when we come to a point we cannot make a distinction between it and its place. Hence if the
place of a point is not different from the point, no more will that of any of the others be different, and place
will not be something different from each of them.
(3) What in the world then are we to suppose place to be? If it has the sort of nature described, it cannot be an
element or composed of elements, whether these be corporeal or incorporeal: for while it has size, it has not
body. But the elements of sensible bodies are bodies, while nothing that has size results from a combination
of intelligible elements.
(4) Also we may ask: of what in things is space the cause? None of the four modes of causation can be
ascribed to it. It is neither in the sense of the matter of existents (for nothing is composed of it), nor as the
form and definition of things, nor as end, nor does it move existents.
(5) Further, too, if it is itself an existent, where will it be? Zeno's difficulty demands an explanation: for if
everything that exists has a place, place too will have a place, and so on ad infinitum.
(6) Again, just as every body is in place, so, too, every place has a body in it. What then shall we say about
growing things? It follows from these premisses that their place must grow with them, if their place is neither
less nor greater than they are.
PHYSICS
8 36
Page No 40
By asking these questions, then, we must raise the whole problem about placenot only as to what it is, but
even whether there is such a thing.
2
We may distinguish generally between predicating B of A because it (A) is itself, and because it is something
else; and particularly between place which is common and in which all bodies are, and the special place
occupied primarily by each. I mean, for instance, that you are now in the heavens because you are in the air
and it is in the heavens; and you are in the air because you are on the earth; and similarly on the earth because
you are in this place which contains no more than you.
Now if place is what primarily contains each body, it would be a limit, so that the place would be the form or
shape of each body by which the magnitude or the matter of the magnitude is defined: for this is the limit of
each body.
If, then, we look at the question in this way the place of a thing is its form. But, if we regard the place as the
extension of the magnitude, it is the matter. For this is different from the magnitude: it is what is contained
and defined by the form, as by a bounding plane. Matter or the indeterminate is of this nature; when the
boundary and attributes of a sphere are taken away, nothing but the matter is left.
This is why Plato in the Timaeus says that matter and space are the same; for the 'participant' and space are
identical. (It is true, indeed, that the account he gives there of the 'participant' is different from what he says
in his socalled 'unwritten teaching'. Nevertheless, he did identify place and space.) I mention Plato because,
while all hold place to be something, he alone tried to say what it is.
In view of these facts we should naturally expect to find difficulty in determining what place is, if indeed it is
one of these two things, matter or form. They demand a very close scrutiny, especially as it is not easy to
recognize them apart.
But it is at any rate not difficult to see that place cannot be either of them. The form and the matter are not
separate from the thing, whereas the place can be separated. As we pointed out, where air was, water in turn
comes to be, the one replacing the other; and similarly with other bodies. Hence the place of a thing is neither
a part nor a state of it, but is separable from it. For place is supposed to be something like a vesselthe vessel
being a transportable place. But the vessel is no part of the thing.
In so far then as it is separable from the thing, it is not the form: qua containing, it is different from the
matter.
Also it is held that what is anywhere is both itself something and that there is a different thing outside it.
(Plato of course, if we may digress, ought to tell us why the form and the numbers are not in place, if 'what
participates' is placewhether what participates is the Great and the Small or the matter, as he called it in
writing in the Timaeus.)
Further, how could a body be carried to its own place, if place was the matter or the form? It is impossible
that what has no reference to motion or the distinction of up and down can be place. So place must be looked
for among things which have these characteristics.
If the place is in the thing (it must be if it is either shape or matter) place will have a place: for both the form
and the indeterminate undergo change and motion along with the thing, and are not always in the same place,
but are where the thing is. Hence the place will have a place.
PHYSICS
2 37
Page No 41
Further, when water is produced from air, the place has been destroyed, for the resulting body is not in the
same place. What sort of destruction then is that?
This concludes my statement of the reasons why space must be something, and again of the difficulties that
may be raised about its essential nature.
3
The next step we must take is to see in how many senses one thing is said to be 'in' another.
(1) As the finger is 'in' the hand and generally the part 'in' the whole.
(2) As the whole is 'in' the parts: for there is no whole over and above the parts.
(3) As man is 'in' animal and generally species 'in' genus.
(4) As the genus is 'in' the species and generally the part of the specific form 'in' the definition of the specific
form.
(5) As health is 'in' the hot and the cold and generally the form 'in' the matter.
(6) As the affairs of Greece centre 'in' the king, and generally events centre 'in' their primary motive agent.
(7) As the existence of a thing centres 'in its good and generally 'in' its end, i.e. in 'that for the sake of which'
it exists.
(8) In the strictest sense of all, as a thing is 'in' a vessel, and generally 'in' place.
One might raise the question whether a thing can be in itself, or whether nothing can be in itselfeverything
being either nowhere or in something else.
The question is ambiguous; we may mean the thing qua itself or qua something else.
When there are parts of a wholethe one that in which a thing is, the other the thing which is in itthe whole
will be described as being in itself. For a thing is described in terms of its parts, as well as in terms of the
thing as a whole, e.g. a man is said to be white because the visible surface of him is white, or to be scientific
because his thinking faculty has been trained. The jar then will not be in itself and the wine will not be in
itself. But the jar of wine will: for the contents and the container are both parts of the same whole.
In this sense then, but not primarily, a thing can be in itself, namely, as 'white' is in body (for the visible
surface is in body), and science is in the mind.
It is from these, which are 'parts' (in the sense at least of being 'in' the man), that the man is called white, But
the jar and the wine in separation are not parts of a whole, though together they are. So when there are parts, a
thing will be in itself, as 'white' is in man because it is in body, and in body because it resides in the visible
surface. We cannot go further and say that it is in surface in virtue of something other than itself. (Yet it is not
in itself: though these are in a way the same thing,) they differ in essence, each having a special nature and
capacity, 'surface' and 'white'.
Thus if we look at the matter inductively we do not find anything to be 'in' itself in any of the senses that have
PHYSICS
3 38
Page No 42
been distinguished; and it can be seen by argument that it is impossible. For each of two things will have to
be both, e.g. the jar will have to be both vessel and wine, and the wine both wine and jar, if it is possible for a
thing to be in itself; so that, however true it might be that they were in each other, the jar will receive the wine
in virtue not of its being wine but of the wine's being wine, and the wine will be in the jar in virtue not of its
being a jar but of the jar's being a jar. Now that they are different in respect of their essence is evident; for
'that in which something is' and 'that which is in it' would be differently defined.
Nor is it possible for a thing to be in itself even incidentally: for two things would at the same time in the
same thing. The jar would be in itselfif a thing whose nature it is to receive can be in itself; and that which it
receives, namely (if wine) wine, will be in it.
Obviously then a thing cannot be in itself primarily.
Zeno's problemthat if Place is something it must be in somethingis not difficult to solve. There is nothing
to prevent the first place from being 'in' something elsenot indeed in that as 'in' place, but as health is 'in' the
hot as a positive determination of it or as the hot is 'in' body as an affection. So we escape the infinite regress.
Another thing is plain: since the vessel is no part of what is in it (what contains in the strict sense is different
from what is contained), place could not be either the matter or the form of the thing contained, but must
differentfor the latter, both the matter and the shape, are parts of what is contained.
This then may serve as a critical statement of the difficulties involved.
4
What then after all is place? The answer to this question may be elucidated as follows.
Let us take for granted about it the various characteristics which are supposed correctly to belong to it
essentially. We assume then
(1) Place is what contains that of which it is the place.
(2) Place is no part of the thing.
(3) The immediate place of a thing is neither less nor greater than the thing.
(4) Place can be left behind by the thing and is separable. In addition:
(5) All place admits of the distinction of up and down, and each of the bodies is naturally carried to its
appropriate place and rests there, and this makes the place either up or down.
Having laid these foundations, we must complete the theory. We ought to try to make our investigation such
as will render an account of place, and will not only solve the difficulties connected with it, but will also
show that the attributes supposed to belong to it do really belong to it, and further will make clear the cause
of the trouble and of the difficulties about it. Such is the most satisfactory kind of exposition.
First then we must understand that place would not have been thought of, if there had not been a special kind
of motion, namely that with respect to place. It is chiefly for this reason that we suppose the heaven also to be
in place, because it is in constant movement. Of this kind of change there are two specieslocomotion on the
one hand and, on the other, increase and diminution. For these too involve variation of place: what was then
PHYSICS
4 39
Page No 43
in this place has now in turn changed to what is larger or smaller.
Again, when we say a thing is 'moved', the predicate either (1) belongs to it actually, in virtue of its own
nature, or (2) in virtue of something conjoined with it. In the latter case it may be either (a) something which
by its own nature is capable of being moved, e.g. the parts of the body or the nail in the ship, or (b) something
which is not in itself capable of being moved, but is always moved through its conjunction with something
else, as 'whiteness' or 'science'. These have changed their place only because the subjects to which they
belong do so.
We say that a thing is in the world, in the sense of in place, because it is in the air, and the air is in the world;
and when we say it is in the air, we do not mean it is in every part of the air, but that it is in the air because of
the outer surface of the air which surrounds it; for if all the air were its place, the place of a thing would not
be equal to the thingwhich it is supposed to be, and which the primary place in which a thing is actually is.
When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be
in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate and
in contact, it is immediately 'in' the inner surface of the surrounding body, and this surface is neither a part of
what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are
coincident.
Further, if one body is in continuity with another, it is not moved in that but with that. On the other hand it is
moved in that if it is separate. It makes no difference whether what contains is moved or not.
Again, when it is not separate it is described as a part in a whole, as the pupil in the eye or the hand in the
body: when it is separate, as the water in the cask or the wine in the jar. For the hand is moved with the body
and the water in the cask.
It will now be plain from these considerations what place is. There are just four things of which place must be
onethe shape, or the matter, or some sort of extension between the bounding surfaces of the containing
body, or this boundary itself if it contains no extension over and above the bulk of the body which comes to
be in it.
Three of these it obviously cannot be:
(1) The shape is supposed to be place because it surrounds, for the extremities of what contains and of what is
contained are coincident. Both the shape and the place, it is true, are boundaries. But not of the same thing:
the form is the boundary of the thing, the place is the boundary of the body which contains it.
(2) The extension between the extremities is thought to be something, because what is contained and separate
may often be changed while the container remains the same (as water may be poured from a vessel)the
assumption being that the extension is something over and above the body displaced. But there is no such
extension. One of the bodies which change places and are naturally capable of being in contact with the
container falls in whichever it may chance to be.
If there were an extension which were such as to exist independently and be permanent, there would be an
infinity of places in the same thing. For when the water and the air change places, all the portions of the two
together will play the same part in the whole which was previously played by all the water in the vessel; at
the same time the place too will be undergoing change; so that there will be another place which is the place
of the place, and many places will be coincident. There is not a different place of the part, in which it is
moved, when the whole vessel changes its place: it is always the same: for it is in the (proximate) place where
they are that the air and the water (or the parts of the water) succeed each other, not in that place in which
PHYSICS
4 40
Page No 44
they come to be, which is part of the place which is the place of the whole world.
(3) The matter, too, might seem to be place, at least if we consider it in what is at rest and is thus separate but
in continuity. For just as in change of quality there is something which was formerly black and is now white,
or formerly soft and now hardthis is just why we say that the matter existsso place, because it presents a
similar phenomenon, is thought to existonly in the one case we say so because what was air is now water, in
the other because where air formerly was there a is now water. But the matter, as we said before, is neither
separable from the thing nor contains it, whereas place has both characteristics.
Well, then, if place is none of the threeneither the form nor the matter nor an extension which is always
there, different from, and over and above, the extension of the thing which is displacedplace necessarily is
the one of the four which is left, namely, the boundary of the containing body at which it is in contact with
the contained body. (By the contained body is meant what can be moved by way of locomotion.)
Place is thought to be something important and hard to grasp, both because the matter and the shape present
themselves along with it, and because the displacement of the body that is moved takes place in a stationary
container, for it seems possible that there should be an interval which is other than the bodies which are
moved. The air, too, which is thought to be incorporeal, contributes something to the belief: it is not only the
boundaries of the vessel which seem to be place, but also what is between them, regarded as empty. Just, in
fact, as the vessel is transportable place, so place is a nonportable vessel. So when what is within a thing
which is moved, is moved and changes its place, as a boat on a river, what contains plays the part of a vessel
rather than that of place. Place on the other hand is rather what is motionless: so it is rather the whole river
that is place, because as a whole it is motionless.
Hence we conclude that the innermost motionless boundary of what contains is place.
This explains why the middle of the heaven and the surface which faces us of the rotating system are held to
be 'up' and 'down' in the strict and fullest sense for all men: for the one is always at rest, while the inner side
of the rotating body remains always coincident with itself. Hence since the light is what is naturally carried
up, and the heavy what is carried down, the boundary which contains in the direction of the middle of the
universe, and the middle itself, are down, and that which contains in the direction of the outermost part of the
universe, and the outermost part itself, are up.
For this reason, too, place is thought to be a kind of surface, and as it were a vessel, i.e. a container of the
thing.
Further, place is coincident with the thing, for boundaries are coincident with the bounded.
5
If then a body has another body outside it and containing it, it is in place, and if not, not. That is why, even if
there were to be water which had not a container, the parts of it, on the one hand, will be moved (for one part
is contained in another), while, on the other hand, the whole will be moved in one sense, but not in another.
For as a whole it does not simultaneously change its place, though it will be moved in a circle: for this place
is the place of its parts. (Some things are moved, not up and down, but in a circle; others up and down, such
things namely as admit of condensation and rarefaction.)
As was explained, some things are potentially in place, others actually. So, when you have a homogeneous
substance which is continuous, the parts are potentially in place: when the parts are separated, but in contact,
like a heap, they are actually in place.
PHYSICS
5 41
Page No 45
Again, (1) some things are per se in place, namely every body which is movable either by way of locomotion
or by way of increase is per se somewhere, but the heaven, as has been said, is not anywhere as a whole, nor
in any place, if at least, as we must suppose, no body contains it. On the line on which it is moved, its parts
have place: for each is contiguous the next.
But (2) other things are in place indirectly, through something conjoined with them, as the soul and the
heaven. The latter is, in a way, in place, for all its parts are: for on the orb one part contains another. That is
why the upper part is moved in a circle, while the All is not anywhere. For what is somewhere is itself
something, and there must be alongside it some other thing wherein it is and which contains it. But alongside
the All or the Whole there is nothing outside the All, and for this reason all things are in the heaven; for the
heaven, we may say, is the All. Yet their place is not the same as the heaven. It is part of it, the innermost part
of it, which is in contact with the movable body; and for this reason the earth is in water, and this in the air,
and the air in the aether, and the aether in heaven, but we cannot go on and say that the heaven is in anything
else.
It is clear, too, from these considerations that all the problems which were raised about place will be solved
when it is explained in this way:
(1) There is no necessity that the place should grow with the body in it,
(2) Nor that a point should have a place,
(3) Nor that two bodies should be in the same place,
(4) Nor that place should be a corporeal interval: for what is between the boundaries of the place is any body
which may chance to be there, not an interval in body.
Further, (5) place is also somewhere, not in the sense of being in a place, but as the limit is in the limited; for
not everything that is is in place, but only movable body.
Also (6) it is reasonable that each kind of body should be carried to its own place. For a body which is next in
the series and in contact (not by compulsion) is akin, and bodies which are united do not affect each other,
while those which are in contact interact on each other.
Nor (7) is it without reason that each should remain naturally in its proper place. For this part has the same
relation to its place, as a separable part to its whole, as when one moves a part of water or air: so, too, air is
related to water, for the one is like matter, the other formwater is the matter of air, air as it were the actuality
of water, for water is potentially air, while air is potentially water, though in another way.
These distinctions will be drawn more carefully later. On the present occasion it was necessary to refer to
them: what has now been stated obscurely will then be made more clear. If the matter and the fulfilment are
the same thing (for water is both, the one potentially, the other completely), water will be related to air in a
way as part to whole. That is why these have contact: it is organic union when both become actually one.
This concludes my account of placeboth of its existence and of its nature.
6
The investigation of similar questions about the void, also, must be held to belong to the physicistnamely
whether it exists or not, and how it exists or what it isjust as about place. The views taken of it involve
PHYSICS
6 42
Page No 46
arguments both for and against, in much the same sort of way. For those who hold that the void exists regard
it as a sort of place or vessel which is supposed to be 'full' when it holds the bulk which it is capable of
containing, 'void' when it is deprived of thatas if 'void' and 'full' and 'place' denoted the same thing, though
the essence of the three is different.
We must begin the inquiry by putting down the account given by those who say that it exists, then the
account of those who say that it does not exist, and third the current view on these questions.
Those who try to show that the void does not exist do not disprove what people really mean by it, but only
their erroneous way of speaking; this is true of Anaxagoras and of those who refute the existence of the void
in this way. They merely give an ingenious demonstration that air is somethingby straining wineskins
and showing the resistance of the air, and by cutting it off in clepsydras. But people really mean that there is
an empty interval in which there is no sensible body. They hold that everything which is in body is body and
say that what has nothing in it at all is void (so what is full of air is void). It is not then the existence of air
that needs to be proved, but the nonexistence of an interval, different from the bodies, either separable or
actualan interval which divides the whole body so as to break its continuity, as Democritus and Leucippus
hold, and many other physicistsor even perhaps as something which is outside the whole body, which
remains continuous.
These people, then, have not reached even the threshold of the problem, but rather those who say that the
void exists.
(1) They argue, for one thing, that change in place (i.e. locomotion and increase) would not be. For it is
maintained that motion would seem not to exist, if there were no void, since what is full cannot contain
anything more. If it could, and there were two bodies in the same place, it would also be true that any number
of bodies could be together; for it is impossible to draw a line of division beyond which the statement would
become untrue. If this were possible, it would follow also that the smallest body would contain the greatest;
for 'many a little makes a mickle': thus if many equal bodies can be together, so also can many unequal
bodies.
Melissus, indeed, infers from these considerations that the All is immovable; for if it were moved there must,
he says, be void, but void is not among the things that exist.
This argument, then, is one way in which they show that there is a void.
(2) They reason from the fact that some things are observed to contract and be compressed, as people say that
a cask will hold the wine which formerly filled it, along with the skins into which the wine has been
decanted, which implies that the compressed body contracts into the voids present in it.
Again (3) increase, too, is thought to take always by means of void, for nutriment is body, and it is impossible
for two bodies to be together. A proof of this they find also in what happens to ashes, which absorb as much
water as the empty vessel.
The Pythagoreans, too, (4) held that void exists and that it enters the heaven itself, which as it were inhales it,
from the infinite air. Further it is the void which distinguishes the natures of things, as if it were like what
separates and distinguishes the terms of a series. This holds primarily in the numbers, for the void
distinguishes their nature.
These, then, and so many, are the main grounds on which people have argued for and against the existence of
the void.
PHYSICS
6 43
Page No 47
7
As a step towards settling which view is true, we must determine the meaning of the name.
The void is thought to be place with nothing in it. The reason for this is that people take what exists to be
body, and hold that while every body is in place, void is place in which there is no body, so that where there
is no body, there must be void.
Every body, again, they suppose to be tangible; and of this nature is whatever has weight or lightness.
Hence, by a syllogism, what has nothing heavy or light in it, is void.
This result, then, as I have said, is reached by syllogism. It would be absurd to suppose that the point is void;
for the void must be place which has in it an interval in tangible body.
But at all events we observe then that in one way the void is described as what is not full of body perceptible
to touch; and what has heaviness and lightness is perceptible to touch. So we would raise the question: what
would they say of an interval that has colour or soundis it void or not? Clearly they would reply that if it
could receive what is tangible it was void, and if not, not.
In another way void is that in which there is no 'this' or corporeal substance. So some say that the void is the
matter of the body (they identify the place, too, with this), and in this they speak incorrectly; for the matter is
not separable from the things, but they are inquiring about the void as about something separable.
Since we have determined the nature of place, and void must, if it exists, be place deprived of body, and we
have stated both in what sense place exists and in what sense it does not, it is plain that on this showing void
does not exist, either unseparated or separated; the void is meant to be, not body but rather an interval in
body. This is why the void is thought to be something, viz. because place is, and for the same reasons. For the
fact of motion in respect of place comes to the aid both of those who maintain that place is something over
and above the bodies that come to occupy it, and of those who maintain that the void is something. They state
that the void is the condition of movement in the sense of that in which movement takes place; and this would
be the kind of thing that some say place is.
But there is no necessity for there being a void if there is movement. It is not in the least needed as a
condition of movement in general, for a reason which, incidentally, escaped Melissus; viz. that the full can
suffer qualitative change.
But not even movement in respect of place involves a void; for bodies may simultaneously make room for
one another, though there is no interval separate and apart from the bodies that are in movement. And this is
plain even in the rotation of continuous things, as in that of liquids.
And things can also be compressed not into a void but because they squeeze out what is contained in them
(as, for instance, when water is compressed the air within it is squeezed out); and things can increase in size
not only by the entrance of something but also by qualitative change; e.g. if water were to be transformed into
air.
In general, both the argument about increase of size and that about water poured on to the ashes get in their
own way. For either not any and every part of the body is increased, or bodies may be increased otherwise
than by the addition of body, or there may be two bodies in the same place (in which case they are claiming
to solve a quite general difficulty, but are not proving the existence of void), or the whole body must be void,
PHYSICS
7 44
Page No 48
if it is increased in every part and is increased by means of void. The same argument applies to the ashes.
It is evident, then, that it is easy to refute the arguments by which they prove the existence of the void.
8
Let us explain again that there is no void existing separately, as some maintain. If each of the simple bodies
has a natural locomotion, e.g. fire upward and earth downward and towards the middle of the universe, it is
clear that it cannot be the void that is the condition of locomotion. What, then, will the void be the condition
of? It is thought to be the condition of movement in respect of place, and it is not the condition of this.
Again, if void is a sort of place deprived of body, when there is a void where will a body placed in it move
to? It certainly cannot move into the whole of the void. The same argument applies as against those who
think that place is something separate, into which things are carried; viz. how will what is placed in it move,
or rest? Much the same argument will apply to the void as to the 'up' and 'down' in place, as is natural enough
since those who maintain the existence of the void make it a place.
And in what way will things be present either in placeor in the void? For the expected result does not take
place when a body is placed as a whole in a place conceived of as separate and permanent; for a part of it,
unless it be placed apart, will not be in a place but in the whole. Further, if separate place does not exist,
neither will void.
If people say that the void must exist, as being necessary if there is to be movement, what rather turns out to
be the case, if one the matter, is the opposite, that not a single thing can be moved if there is a void; for as
with those who for a like reason say the earth is at rest, so, too, in the void things must be at rest; for there is
no place to which things can move more or less than to another; since the void in so far as it is void admits no
difference.
The second reason is this: all movement is either compulsory or according to nature, and if there is
compulsory movement there must also be natural (for compulsory movement is contrary to nature, and
movement contrary to nature is posterior to that according to nature, so that if each of the natural bodies has
not a natural movement, none of the other movements can exist); but how can there be natural movement if
there is no difference throughout the void or the infinite? For in so far as it is infinite, there will be no up or
down or middle, and in so far as it is a void, up differs no whit from down; for as there is no difference in
what is nothing, there is none in the void (for the void seems to be a nonexistent and a privation of being),
but natural locomotion seems to be differentiated, so that the things that exist by nature must be
differentiated. Either, then, nothing has a natural locomotion, or else there is no void.
Further, in point of fact things that are thrown move though that which gave them their impulse is not
touching them, either by reason of mutual replacement, as some maintain, or because the air that has been
pushed pushes them with a movement quicker than the natural locomotion of the projectile wherewith it
moves to its proper place. But in a void none of these things can take place, nor can anything be moved save
as that which is carried is moved.
Further, no one could say why a thing once set in motion should stop anywhere; for why should it stop here
rather than here? So that a thing will either be at rest or must be moved ad infinitum, unless something more
powerful get in its way.
Further, things are now thought to move into the void because it yields; but in a void this quality is present
equally everywhere, so that things should move in all directions.
PHYSICS
8 45
Page No 49
Further, the truth of what we assert is plain from the following considerations. We see the same weight or
body moving faster than another for two reasons, either because there is a difference in what it moves
through, as between water, air, and earth, or because, other things being equal, the moving body differs from
the other owing to excess of weight or of lightness.
Now the medium causes a difference because it impedes the moving thing, most of all if it is moving in the
opposite direction, but in a secondary degree even if it is at rest; and especially a medium that is not easily
divided, i.e. a medium that is somewhat dense. A, then, will move through B in time G, and through D, which
is thinner, in time E (if the length of B is egual to D), in proportion to the density of the hindering body. For
let B be water and D air; then by so much as air is thinner and more incorporeal than water, A will move
through D faster than through B. Let the speed have the same ratio to the speed, then, that air has to water.
Then if air is twice as thin, the body will traverse B in twice the time that it does D, and the time G will be
twice the time E. And always, by so much as the medium is more incorporeal and less resistant and more
easily divided, the faster will be the movement.
Now there is no ratio in which the void is exceeded by body, as there is no ratio of 0 to a number. For if 4
exceeds 3 by 1, and 2 by more than 1, and 1 by still more than it exceeds 2, still there is no ratio by which it
exceeds 0; for that which exceeds must be divisible into the excess + that which is exceeded, so that will be
what it exceeds 0 by + 0. For this reason, too, a line does not exceed a point unless it is composed of points!
Similarly the void can bear no ratio to the full, and therefore neither can movement through the one to
movement through the other, but if a thing moves through the thickest medium such and such a distance in
such and such a time, it moves through the void with a speed beyond any ratio. For let Z be void, equal in
magnitude to B and to D. Then if A is to traverse and move through it in a certain time, H, a time less than E,
however, the void will bear this ratio to the full. But in a time equal to H, A will traverse the part O of A. And
it will surely also traverse in that time any substance Z which exceeds air in thickness in the ratio which the
time E bears to the time H. For if the body Z be as much thinner than D as E exceeds H, A, if it moves
through Z, will traverse it in a time inverse to the speed of the movement, i.e. in a time equal to H. If, then,
there is no body in Z, A will traverse Z still more quickly. But we supposed that its traverse of Z when Z was
void occupied the time H. So that it will traverse Z in an equal time whether Z be full or void. But this is
impossible. It is plain, then, that if there is a time in which it will move through any part of the void, this
impossible result will follow: it will be found to traverse a certain distance, whether this be full or void, in an
equal time; for there will be some body which is in the same ratio to the other body as the time is to the time.
To sum the matter up, the cause of this result is obvious, viz. that between any two movements there is a ratio
(for they occupy time, and there is a ratio between any two times, so long as both are finite), but there is no
ratio of void to full.
These are the consequences that result from a difference in the media; the following depend upon an excess
of one moving body over another. We see that bodies which have a greater impulse either of weight or of
lightness, if they are alike in other respects, move faster over an equal space, and in the ratio which their
magnitudes bear to each other. Therefore they will also move through the void with this ratio of speed. But
that is impossible; for why should one move faster? (In moving through plena it must be so; for the greater
divides them faster by its force. For a moving thing cleaves the medium either by its shape, or by the impulse
which the body that is carried along or is projected possesses.) Therefore all will possess equal velocity. But
this is impossible.
It is evident from what has been said, then, that, if there is a void, a result follows which is the very opposite
of the reason for which those who believe in a void set it up. They think that if movement in respect of place
is to exist, the void cannot exist, separated all by itself; but this is the same as to say that place is a separate
cavity; and this has already been stated to be impossible.
PHYSICS
8 46
Page No 50
But even if we consider it on its own merits the socalled vacuum will be found to be really vacuous. For as,
if one puts a cube in water, an amount of water equal to the cube will be displaced; so too in air; but the effect
is imperceptible to sense. And indeed always in the case of any body that can be displaced, must, if it is not
compressed, be displaced in the direction in which it is its nature to be displacedalways either down, if its
locomotion is downwards as in the case of earth, or up, if it is fire, or in both directionswhatever be the
nature of the inserted body. Now in the void this is impossible; for it is not body; the void must have
penetrated the cube to a distance equal to that which this portion of void formerly occupied in the void, just as
if the water or air had not been displaced by the wooden cube, but had penetrated right through it.
But the cube also has a magnitude equal to that occupied by the void; a magnitude which, if it is also hot or
cold, or heavy or light, is none the less different in essence from all its attributes, even if it is not separable
from them; I mean the volume of the wooden cube. So that even if it were separated from everything else and
were neither heavy nor light, it will occupy an equal amount of void, and fill the same place, as the part of
place or of the void equal to itself. How then will the body of the cube differ from the void or place that is
equal to it? And if there can be two such things, why cannot there be any number coinciding?
This, then, is one absurd and impossible implication of the theory. It is also evident that the cube will have
this same volume even if it is displaced, which is an attribute possessed by all other bodies also. Therefore if
this differs in no respect from its place, why need we assume a place for bodies over and above the volume of
each, if their volume be conceived of as free from attributes? It contributes nothing to the situation if there is
an equal interval attached to it as well. [Further it ought to be clear by the study of moving things what sort of
thing void is. But in fact it is found nowhere in the world. For air is something, though it does not seem to be
sonor, for that matter, would water, if fishes were made of iron; for the discrimination of the tangible is by
touch.]
It is clear, then, from these considerations that there is no separate void.
9
There are some who think that the existence of rarity and density shows that there is a void. If rarity and
density do not exist, they say, neither can things contract and be compressed. But if this were not to take
place, either there would be no movement at all, or the universe would bulge, as Xuthus said, or air and water
must always change into equal amounts (e.g. if air has been made out of a cupful of water, at the same time
out of an equal amount of air a cupful of water must have been made), or void must necessarily exist; for
compression and expansion cannot take place otherwise.
Now, if they mean by the rare that which has many voids existing separately, it is plain that if void cannot
exist separate any more than a place can exist with an extension all to itself, neither can the rare exist in this
sense. But if they mean that there is void, not separately existent, but still present in the rare, this is less
impossible, yet, first, the void turns out not to be a condition of all movement, but only of movement upwards
(for the rare is light, which is the reason why they say fire is rare); second, the void turns out to be a condition
of movement not as that in which it takes place, but in that the void carries things up as skins by being carried
up themselves carry up what is continuous with them. Yet how can void have a local movement or a place?
For thus that into which void moves is till then void of a void.
Again, how will they explain, in the case of what is heavy, its movement downwards? And it is plain that if
the rarer and more void a thing is the quicker it will move upwards, if it were completely void it would move
with a maximum speed! But perhaps even this is impossible, that it should move at all; the same reason
which showed that in the void all things are incapable of moving shows that the void cannot move, viz. the
fact that the speeds are incomparable.
PHYSICS
9 47
Page No 51
Since we deny that a void exists, but for the rest the problem has been truly stated, that either there will be no
movement, if there is not to be condensation and rarefaction, or the universe will bulge, or a transformation of
water into air will always be balanced by an equal transformation of air into water (for it is clear that the air
produced from water is bulkier than the water): it is necessary therefore, if compression does not exist, either
that the next portion will be pushed outwards and make the outermost part bulge, or that somewhere else
there must be an equal amount of water produced out of air, so that the entire bulk of the whole may be equal,
or that nothing moves. For when anything is displaced this will always happen, unless it comes round in a
circle; but locomotion is not always circular, but sometimes in a straight line.
These then are the reasons for which they might say that there is a void; our statement is based on the
assumption that there is a single matter for contraries, hot and cold and the other natural contrarieties, and
that what exists actually is produced from a potential existent, and that matter is not separable from the
contraries but its being is different, and that a single matter may serve for colour and heat and cold.
The same matter also serves for both a large and a small body. This is evident; for when air is produced from
water, the same matter has become something different, not by acquiring an addition to it, but has become
actually what it was potentially, and, again, water is produced from air in the same way, the change being
sometimes from smallness to greatness, and sometimes from greatness to smallness. Similarly, therefore, if
air which is large in extent comes to have a smaller volume, or becomes greater from being smaller, it is the
matter which is potentially both that comes to be each of the two.
For as the same matter becomes hot from being cold, and cold from being hot, because it was potentially
both, so too from hot it can become more hot, though nothing in the matter has become hot that was not hot
when the thing was less hot; just as, if the arc or curve of a greater circle becomes that of a smaller, whether it
remains the same or becomes a different curve, convexity has not come to exist in anything that was not
convex but straight (for differences of degree do not depend on an intermission of the quality); nor can we get
any portion of a flame, in which both heat and whiteness are not present. So too, then, is the earlier heat
related to the later. So that the greatness and smallness, also, of the sensible volume are extended, not by the
matter's acquiring anything new, but because the matter is potentially matter for both states; so that the same
thing is dense and rare, and the two qualities have one matter.
The dense is heavy, and the rare is light. [Again, as the arc of a circle when contracted into a smaller space
does not acquire a new part which is convex, but what was there has been contracted; and as any part of fire
that one takes will be hot; so, too, it is all a question of contraction and expansion of the same matter.] There
are two types in each case, both in the dense and in the rare; for both the heavy and the hard are thought to be
dense, and contrariwise both the light and the soft are rare; and weight and hardness fail to coincide in the
case of lead and iron.
From what has been said it is evident, then, that void does not exist either separate (either absolutely separate
or as a separate element in the rare) or potentially, unless one is willing to call the condition of movement
void, whatever it may be. At that rate the matter of the heavy and the light, qua matter of them, would be the
void; for the dense and the rare are productive of locomotion in virtue of this contrariety, and in virtue of their
hardness and softness productive of passivity and impassivity, i.e. not of locomotion but rather of qualitative
change.
So much, then, for the discussion of the void, and of the sense in which it exists and the sense in which it
does not exist.
PHYSICS
9 48
Page No 52
10
Next for discussion after the subjects mentioned is Time. The best plan will be to begin by working out the
difficulties connected with it, making use of the current arguments. First, does it belong to the class of things
that exist or to that of things that do not exist? Then secondly, what is its nature? To start, then: the following
considerations would make one suspect that it either does not exist at all or barely, and in an obscure way.
One part of it has been and is not, while the other is going to be and is not yet. Yet timeboth infinite time
and any time you like to takeis made up of these. One would naturally suppose that what is made up of
things which do not exist could have no share in reality.
Further, if a divisible thing is to exist, it is necessary that, when it exists, all or some of its parts must exist.
But of time some parts have been, while others have to be, and no part of it is though it is divisible. For what
is 'now' is not a part: a part is a measure of the whole, which must be made up of parts. Time, on the other
hand, is not held to be made up of 'nows'.
Again, the 'now' which seems to bound the past and the futuredoes it always remain one and the same or is
it always other and other? It is hard to say.
(1) If it is always different and different, and if none of the parts in time which are other and other are
simultaneous (unless the one contains and the other is contained, as the shorter time is by the longer), and if
the 'now' which is not, but formerly was, must have ceasedtobe at some time, the 'nows' too cannot be
simultaneous with one another, but the prior 'now' must always have ceasedtobe. But the prior 'now' cannot
have ceasedtobe in itself (since it then existed); yet it cannot have ceasedtobe in another 'now'. For we
may lay it down that one 'now' cannot be next to another, any more than point to point. If then it did not
ceasetobe in the next 'now' but in another, it would exist simultaneously with the innumerable 'nows'
between the twowhich is impossible.
Yes, but (2) neither is it possible for the 'now' to remain always the same. No determinate divisible thing has
a single termination, whether it is continuously extended in one or in more than one dimension: but the 'now'
is a termination, and it is possible to cut off a determinate time. Further, if coincidence in time (i.e. being
neither prior nor posterior) means to be 'in one and the same "now"', then, if both what is before and what is
after are in this same 'now', things which happened ten thousand years ago would be simultaneous with what
has happened today, and nothing would be before or after anything else.
This may serve as a statement of the difficulties about the attributes of time.
As to what time is or what is its nature, the traditional accounts give us as little light as the preliminary
problems which we have worked through.
Some assert that it is (1) the movement of the whole, others that it is (2) the sphere itself.
(1) Yet part, too, of the revolution is a time, but it certainly is not a revolution: for what is taken is part of a
revolution, not a revolution. Besides, if there were more heavens than one, the movement of any of them
equally would be time, so that there would be many times at the same time.
(2) Those who said that time is the sphere of the whole thought so, no doubt, on the ground that all things are
in time and all things are in the sphere of the whole. The view is too naive for it to be worth while to consider
the impossibilities implied in it.
But as time is most usually supposed to be (3) motion and a kind of change, we must consider this view.
PHYSICS
10 49
Page No 53
Now (a) the change or movement of each thing is only in the thing which changes or where the thing itself
which moves or changes may chance to be. But time is present equally everywhere and with all things.
Again, (b) change is always faster or slower, whereas time is not: for 'fast' and 'slow' are defined by
time'fast' is what moves much in a short time, 'slow' what moves little in a long time; but time is not defined
by time, by being either a certain amount or a certain kind of it.
Clearly then it is not movement. (We need not distinguish at present between 'movement' and 'change'.)
11
But neither does time exist without change; for when the state of our own minds does not change at all, or we
have not noticed its changing, we do not realize that time has elapsed, any more than those who are fabled to
sleep among the heroes in Sardinia do when they are awakened; for they connect the earlier 'now' with the
later and make them one, cutting out the interval because of their failure to notice it. So, just as, if the 'now'
were not different but one and the same, there would not have been time, so too when its difference escapes
our notice the interval does not seem to be time. If, then, the nonrealization of the existence of time happens
to us when we do not distinguish any change, but the soul seems to stay in one indivisible state, and when we
perceive and distinguish we say time has elapsed, evidently time is not independent of movement and change.
It is evident, then, that time is neither movement nor independent of movement.
We must take this as our startingpoint and try to discoversince we wish to know what time iswhat exactly
it has to do with movement.
Now we perceive movement and time together: for even when it is dark and we are not being affected
through the body, if any movement takes place in the mind we at once suppose that some time also has
elapsed; and not only that but also, when some time is thought to have passed, some movement also along
with it seems to have taken place. Hence time is either movement or something that belongs to movement.
Since then it is not movement, it must be the other.
But what is moved is moved from something to something, and all magnitude is continuous. Therefore the
movement goes with the magnitude. Because the magnitude is continuous, the movement too must be
continuous, and if the movement, then the time; for the time that has passed is always thought to be in
proportion to the movement.
The distinction of 'before' and 'after' holds primarily, then, in place; and there in virtue of relative position.
Since then 'before' and 'after' hold in magnitude, they must hold also in movement, these corresponding to
those. But also in time the distinction of 'before' and 'after' must hold, for time and movement always
correspond with each other. The 'before' and 'after' in motion is identical in substratum with motion yet
differs from it in definition, and is not identical with motion.
But we apprehend time only when we have marked motion, marking it by 'before' and 'after'; and it is only
when we have perceived 'before' and 'after' in motion that we say that time has elapsed. Now we mark them
by judging that A and B are different, and that some third thing is intermediate to them. When we think of the
extremes as different from the middle and the mind pronounces that the 'nows' are two, one before and one
after, it is then that we say that there is time, and this that we say is time. For what is bounded by the 'now' is
thought to be timewe may assume this.
When, therefore, we perceive the 'now' one, and neither as before and after in a motion nor as an identity but
in relation to a 'before' and an 'after', no time is thought to have elapsed, because there has been no motion
PHYSICS
11 50
Page No 54
either. On the other hand, when we do perceive a 'before' and an 'after', then we say that there is time. For
time is just thisnumber of motion in respect of 'before' and 'after'.
Hence time is not movement, but only movement in so far as it admits of enumeration. A proof of this: we
discriminate the more or the less by number, but more or less movement by time. Time then is a kind of
number. (Number, we must note, is used in two sensesboth of what is counted or the countable and also of
that with which we count. Time obviously is what is counted, not that with which we count: there are
different kinds of thing.) Just as motion is a perpetual succession, so also is time. But every simultaneous
time is selfidentical; for the 'now' as a subject is an identity, but it accepts different attributes. The 'now'
measures time, in so far as time involves the 'before and after'.
The 'now' in one sense is the same, in another it is not the same. In so far as it is in succession, it is different
(which is just what its being was supposed to mean), but its substratum is an identity: for motion, as was said,
goes with magnitude, and time, as we maintain, with motion. Similarly, then, there corresponds to the point
the body which is carried along, and by which we are aware of the motion and of the 'before and after'
involved in it. This is an identical substratum (whether a point or a stone or something else of the kind), but it
has different attributes as the sophists assume that Coriscus' being in the Lyceum is a different thing from
Coriscus' being in the marketplace. And the body which is carried along is different, in so far as it is at one
time here and at another there. But the 'now' corresponds to the body that is carried along, as time
corresponds to the motion. For it is by means of the body that is carried along that we become aware of the
'before and after' the motion, and if we regard these as countable we get the 'now'. Hence in these also the
'now' as substratum remains the same (for it is what is before and after in movement), but what is predicated
of it is different; for it is in so far as the 'before and after' is numerable that we get the 'now'. This is what is
most knowable: for, similarly, motion is known because of that which is moved, locomotion because of that
which is carried. what is carried is a real thing, the movement is not. Thus what is called 'now' in one sense is
always the same; in another it is not the same: for this is true also of what is carried.
Clearly, too, if there were no time, there would be no 'now', and vice versa. just as the moving body and its
locomotion involve each other mutually, so too do the number of the moving body and the number of its
locomotion. For the number of the locomotion is time, while the 'now' corresponds to the moving body, and
is like the unit of number.
Time, then, also is both made continuous by the 'now' and divided at it. For here too there is a correspondence
with the locomotion and the moving body. For the motion or locomotion is made one by the thing which is
moved, because it is onenot because it is one in its own nature (for there might be pauses in the movement
of such a thing)but because it is one in definition: for this determines the movement as 'before' and 'after'.
Here, too there is a correspondence with the point; for the point also both connects and terminates the
lengthit is the beginning of one and the end of another. But when you take it in this way, using the one point
as two, a pause is necessary, if the same point is to be the beginning and the end. The 'now' on the other hand,
since the body carried is moving, is always different.
Hence time is not number in the sense in which there is 'number' of the same point because it is beginning
and end, but rather as the extremities of a line form a number, and not as the parts of the line do so, both for
the reason given (for we can use the middle point as two, so that on that analogy time might stand still), and
further because obviously the 'now' is no part of time nor the section any part of the movement, any more
than the points are parts of the linefor it is two lines that are parts of one line.
In so far then as the 'now' is a boundary, it is not time, but an attribute of it; in so far as it numbers, it is
number; for boundaries belong only to that which they bound, but number (e.g. ten) is the number of these
horses, and belongs also elsewhere.
PHYSICS
11 51
Page No 55
It is clear, then, that time is 'number of movement in respect of the before and after', and is continuous since it
is an attribute of what is continuous.
12
The smallest number, in the strict sense of the word 'number', is two. But of number as concrete, sometimes
there is a minimum, sometimes not: e.g. of a 'line', the smallest in respect of multiplicity is two (or, if you
like, one), but in respect of size there is no minimum; for every line is divided ad infinitum. Hence it is so
with time. In respect of number the minimum is one (or two); in point of extent there is no minimum.
It is clear, too, that time is not described as fast or slow, but as many or few and as long or short. For as
continuous it is long or short and as a number many or few, but it is not fast or slowany more than any
number with which we number is fast or slow.
Further, there is the same time everywhere at once, but not the same time before and after, for while the
present change is one, the change which has happened and that which will happen are different. Time is not
number with which we count, but the number of things which are counted, and this according as it occurs
before or after is always different, for the 'nows' are different. And the number of a hundred horses and a
hundred men is the same, but the things numbered are differentthe horses from the men. Further, as a
movement can be one and the same again and again, so too can time, e.g. a year or a spring or an autumn.
Not only do we measure the movement by the time, but also the time by the movement, because they define
each other. The time marks the movement, since it is its number, and the movement the time. We describe the
time as much or little, measuring it by the movement, just as we know the number by what is numbered, e.g.
the number of the horses by one horse as the unit. For we know how many horses there are by the use of the
number; and again by using the one horse as unit we know the number of the horses itself. So it is with the
time and the movement; for we measure the movement by the time and vice versa. It is natural that this
should happen; for the movement goes with the distance and the time with the movement, because they are
quanta and continuous and divisible. The movement has these attributes because the distance is of this nature,
and the time has them because of the movement. And we measure both the distance by the movement and the
movement by the distance; for we say that the road is long, if the journey is long, and that this is long, if the
road is longthe time, too, if the movement, and the movement, if the time.
Time is a measure of motion and of being moved, and it measures the motion by determining a motion which
will measure exactly the whole motion, as the cubit does the length by determining an amount which will
measure out the whole. Further 'to be in time' means for movement, that both it and its essence are measured
by time (for simultaneously it measures both the movement and its essence, and this is what being in time
means for it, that its essence should be measured).
Clearly then 'to be in time' has the same meaning for other things also, namely, that their being should be
measured by time. 'To be in time' is one of two things: (1) to exist when time exists, (2) as we say of some
things that they are 'in number'. The latter means either what is a part or mode of numberin general,
something which belongs to numberor that things have a number.
Now, since time is number, the 'now' and the 'before' and the like are in time, just as 'unit' and 'odd' and 'even'
are in number, i.e. in the sense that the one set belongs to number, the other to time. But things are in time as
they are in number. If this is so, they are contained by time as things in place are contained by place.
Plainly, too, to be in time does not mean to coexist with time, any more than to be in motion or in place
means to coexist with motion or place. For if 'to be in something' is to mean this, then all things will be in
PHYSICS
12 52
Page No 56
anything, and the heaven will be in a grain; for when the grain is, then also is the heaven. But this is a merely
incidental conjunction, whereas the other is necessarily involved: that which is in time necessarily involves
that there is time when it is, and that which is in motion that there is motion when it is.
Since what is 'in time' is so in the same sense as what is in number is so, a time greater than everything in
time can be found. So it is necessary that all the things in time should be contained by time, just like other
things also which are 'in anything', e.g. the things 'in place' by place.
A thing, then, will be affected by time, just as we are accustomed to say that time wastes things away, and
that all things grow old through time, and that there is oblivion owing to the lapse of time, but we do not say
the same of getting to know or of becoming young or fair. For time is by its nature the cause rather of decay,
since it is the number of change, and change removes what is.
Hence, plainly, things which are always are not, as such, in time, for they are not contained time, nor is their
being measured by time. A proof of this is that none of them is affected by time, which indicates that they are
not in time.
Since time is the measure of motion, it will be the measure of rest tooindirectly. For all rest is in time. For it
does not follow that what is in time is moved, though what is in motion is necessarily moved. For time is not
motion, but 'number of motion': and what is at rest, also, can be in the number of motion. Not everything that
is not in motion can be said to be 'at rest'but only that which can be moved, though it actually is not moved,
as was said above.
'To be in number' means that there is a number of the thing, and that its being is measured by the number in
which it is. Hence if a thing is 'in time' it will be measured by time. But time will measure what is moved and
what is at rest, the one qua moved, the other qua at rest; for it will measure their motion and rest respectively.
Hence what is moved will not be measurable by the time simply in so far as it has quantity, but in so far as its
motion has quantity. Thus none of the things which are neither moved nor at rest are in time: for 'to be in
time' is 'to be measured by time', while time is the measure of motion and rest.
Plainly, then, neither will everything that does not exist be in time, i.e. those nonexistent things that cannot
exist, as the diagonal cannot be commensurate with the side.
Generally, if time is directly the measure of motion and indirectly of other things, it is clear that a thing
whose existence is measured by it will have its existence in rest or motion. Those things therefore which are
subject to perishing and becominggenerally, those which at one time exist, at another do notare necessarily
in time: for there is a greater time which will extend both beyond their existence and beyond the time which
measures their existence. Of things which do not exist but are contained by time some were, e.g. Homer once
was, some will be, e.g. a future event; this depends on the direction in which time contains them; if on both,
they have both modes of existence. As to such things as it does not contain in any way, they neither were nor
are nor will be. These are those nonexistents whose opposites always are, as the incommensurability of the
diagonal always isand this will not be in time. Nor will the commensurability, therefore; hence this eternally
is not, because it is contrary to what eternally is. A thing whose contrary is not eternal can be and not be, and
it is of such things that there is coming to be and passing away.
13
The 'now' is the link of time, as has been said (for it connects past and future time), and it is a limit of time
(for it is the beginning of the one and the end of the other). But this is not obvious as it is with the point,
PHYSICS
13 53
Page No 57
which is fixed. It divides potentially, and in so far as it is dividing the 'now' is always different, but in so far
as it connects it is always the same, as it is with mathematical lines. For the intellect it is not always one and
the same point, since it is other and other when one divides the line; but in so far as it is one, it is the same in
every respect.
So the 'now' also is in one way a potential dividing of time, in another the termination of both parts, and their
unity. And the dividing and the uniting are the same thing and in the same reference, but in essence they are
not the same.
So one kind of 'now' is described in this way: another is when the time is near this kind of 'now'. 'He will
come now' because he will come today; 'he has come now' because he came today. But the things in the
Iliad have not happened 'now', nor is the flood 'now'not that the time from now to them is not continuous,
but because they are not near.
'At some time' means a time determined in relation to the first of the two types of 'now', e.g. 'at some time'
Troy was taken, and 'at some time' there will be a flood; for it must be determined with reference to the 'now'.
There will thus be a determinate time from this 'now' to that, and there was such in reference to the past
event. But if there be no time which is not 'sometime', every time will be determined.
Will time then fail? Surely not, if motion always exists. Is time then always different or does the same time
recur? Clearly time is, in the same way as motion is. For if one and the same motion sometimes recurs, it will
be one and the same time, and if not, not.
Since the 'now' is an end and a beginning of time, not of the same time however, but the end of that which is
past and the beginning of that which is to come, it follows that, as the circle has its convexity and its
concavity, in a sense, in the same thing, so time is always at a beginning and at an end. And for this reason it
seems to be always different; for the 'now' is not the beginning and the end of the same thing; if it were, it
would be at the same time and in the same respect two opposites. And time will not fail; for it is always at a
beginning.
'Presently' or 'just' refers to the part of future time which is near the indivisible present 'now' ('When do you
walk? 'Presently', because the time in which he is going to do so is near), and to the part of past time which is
not far from the 'now' ('When do you walk?' 'I have just been walking'). But to say that Troy has just been
takenwe do not say that, because it is too far from the 'now'. 'Lately', too, refers to the part of past time
which is near the present 'now'. 'When did you go?' 'Lately', if the time is near the existing now. 'Long ago'
refers to the distant past.
'Suddenly' refers to what has departed from its former condition in a time imperceptible because of its
smallness; but it is the nature of all change to alter things from their former condition. In time all things come
into being and pass away; for which reason some called it the wisest of all things, but the Pythagorean Paron
called it the most stupid, because in it we also forget; and his was the truer view. It is clear then that it must
be in itself, as we said before, the condition of destruction rather than of coming into being (for change, in
itself, makes things depart from their former condition), and only incidentally of coming into being, and of
being. A sufficient evidence of this is that nothing comes into being without itself moving somehow and
acting, but a thing can be destroyed even if it does not move at all. And this is what, as a rule, we chiefly
mean by a thing's being destroyed by time. Still, time does not work even this change; even this sort of
change takes place incidentally in time.
We have stated, then, that time exists and what it is, and in how many senses we speak of the 'now', and what
'at some time', 'lately', 'presently' or 'just', 'long ago', and 'suddenly' mean.
PHYSICS
13 54
Page No 58
14
These distinctions having been drawn, it is evident that every change and everything that moves is in time;
for the distinction of faster and slower exists in reference to all change, since it is found in every instance. In
the phrase 'moving faster' I refer to that which changes before another into the condition in question, when it
moves over the same interval and with a regular movement; e.g. in the case of locomotion, if both things
move along the circumference of a circle, or both along a straight line; and similarly in all other cases. But
what is before is in time; for we say 'before' and 'after' with reference to the distance from the 'now', and the
'now' is the boundary of the past and the future; so that since 'nows' are in time, the before and the after will
be in time too; for in that in which the 'now' is, the distance from the 'now' will also be. But 'before' is used
contrariwise with reference to past and to future time; for in the past we call 'before' what is farther from the
'now', and 'after' what is nearer, but in the future we call the nearer 'before' and the farther 'after'. So that since
the 'before' is in time, and every movement involves a 'before', evidently every change and every movement
is in time.
It is also worth considering how time can be related to the soul; and why time is thought to be in everything,
both in earth and in sea and in heaven. Is because it is an attribute, or state, or movement (since it is the
number of movement) and all these things are movable (for they are all in place), and time and movement are
together, both in respect of potentiality and in respect of actuality?
Whether if soul did not exist time would exist or not, is a question that may fairly be asked; for if there
cannot be some one to count there cannot be anything that can be counted, so that evidently there cannot be
number; for number is either what has been, or what can be, counted. But if nothing but soul, or in soul
reason, is qualified to count, there would not be time unless there were soul, but only that of which time is an
attribute, i.e. if movement can exist without soul, and the before and after are attributes of movement, and
time is these qua numerable.
One might also raise the question what sort of movement time is the number of. Must we not say 'of any
kind'? For things both come into being in time and pass away, and grow, and are altered in time, and are
moved locally; thus it is of each movement qua movement that time is the number. And so it is simply the
number of continuous movement, not of any particular kind of it.
But other things as well may have been moved now, and there would be a number of each of the two
movements. Is there another time, then, and will there be two equal times at once? Surely not. For a time that
is both equal and simultaneous is one and the same time, and even those that are not simultaneous are one in
kind; for if there were dogs, and horses, and seven of each, it would be the same number. So, too, movements
that have simultaneous limits have the same time, yet the one may in fact be fast and the other not, and one
may be locomotion and the other alteration; still the time of the two changes is the same if their number also
is equal and simultaneous; and for this reason, while the movements are different and separate, the time is
everywhere the same, because the number of equal and simultaneous movements is everywhere one and the
same.
Now there is such a thing as locomotion, and in locomotion there is included circular movement, and
everything is measured by some one thing homogeneous with it, units by a unit, horses by a horse, and
similarly times by some definite time, and, as we said, time is measured by motion as well as motion by time
(this being so because by a motion definite in time the quantity both of the motion and of the time is
measured): if, then, what is first is the measure of everything homogeneous with it, regular circular motion is
above all else the measure, because the number of this is the best known. Now neither alteration nor increase
nor coming into being can be regular, but locomotion can be. This also is why time is thought to be the
movement of the sphere, viz. because the other movements are measured by this, and time by this movement.
PHYSICS
14 55
Page No 59
This also explains the common saying that human affairs form a circle, and that there is a circle in all other
things that have a natural movement and coming into being and passing away. This is because all other things
are discriminated by time, and end and begin as though conforming to a cycle; for even time itself is thought
to be a circle. And this opinion again is held because time is the measure of this kind of locomotion and is
itself measured by such. So that to say that the things that come into being form a circle is to say that there is
a circle of time; and this is to say that it is measured by the circular movement; for apart from the measure
nothing else to be measured is observed; the whole is just a plurality of measures.
It is said rightly, too, that the number of the sheep and of the dogs is the same number if the two numbers are
equal, but not the same decad or the same ten; just as the equilateral and the scalene are not the same triangle,
yet they are the same figure, because they are both triangles. For things are called the same soandso if they
do not differ by a differentia of that thing, but not if they do; e.g. triangle differs from triangle by a differentia
of triangle, therefore they are different triangles; but they do not differ by a differentia of figure, but are in
one and the same division of it. For a figure of the one kind is a circle and a figure of another kind of triangle,
and a triangle of one kind is equilateral and a triangle of another kind scalene. They are the same figure, then,
that, triangle, but not the same triangle. Therefore the number of two groups alsois the same number (for
their number does not differ by a differentia of number), but it is not the same decad; for the things of which
it is asserted differ; one group are dogs, and the other horses.
We have now discussed timeboth time itself and the matters appropriate to the consideration of it.
Book V
1
EVERYTHING which changes does so in one of three senses. It may change (1) accidentally, as for instance
when we say that something musical walks, that which walks being something in which aptitude for music is
an accident. Again (2) a thing is said without qualification to change because something belonging to it
changes, i.e. in statements which refer to part of the thing in question: thus the body is restored to health
because the eye or the chest, that is to say a part of the whole body, is restored to health. And above all there
is (3) the case of a thing which is in motion neither accidentally nor in respect of something else belonging to
it, but in virtue of being itself directly in motion. Here we have a thing which is essentially movable: and that
which is so is a different thing according to the particular variety of motion: for instance it may be a thing
capable of alteration: and within the sphere of alteration it is again a different thing according as it is capable
of being restored to health or capable of being heated. And there are the same distinctions in the case of the
mover: (1) one thing causes motion accidentally, (2) another partially (because something belonging to it
causes motion), (3) another of itself directly, as, for instance, the physician heals, the hand strikes. We have,
then, the following factors: (a) on the one hand that which directly causes motion, and (b) on the other hand
that which is in motion: further, we have (c) that in which motion takes place, namely time, and (distinct from
these three) (d) that from which and (e) that to which it proceeds: for every motion proceeds from something
and to something, that which is directly in motion being distinct from that to which it is in motion and that
from which it is in motion: for instance, we may take the three things 'wood', 'hot', and 'cold', of which the
first is that which is in motion, the second is that to which the motion proceeds, and the third is that from
which it proceeds. This being so, it is clear that the motion is in the wood, not in its form: for the motion is
neither caused nor experienced by the form or the place or the quantity. So we are left with a mover, a
moved, and a goal of motion. I do not include the startingpoint of motion: for it is the goal rather than the
startingpoint of motion that gives its name to a particular process of change. Thus 'perishing' is change to
notbeing, though it is also true that that that which perishes changes from being: and 'becoming' is change to
being, though it is also change from notbeing.
PHYSICS
Book V 56
Page No 60
Now a definition of motion has been given above, from which it will be seen that every goal of motion,
whether it be a form, an affection, or a place, is immovable, as, for instance, knowledge and heat. Here,
however, a difficulty may be raised. Affections, it may be said, are motions, and whiteness is an affection:
thus there may be change to a motion. To this we may reply that it is not whiteness but whitening that is a
motion. Here also the same distinctions are to be observed: a goal of motion may be so accidentally, or
partially and with reference to something other than itself, or directly and with no reference to anything else:
for instance, a thing which is becoming white changes accidentally to an object of thought, the colour being
only accidentally the object of thought; it changes to colour, because white is a part of colour, or to Europe,
because Athens is a part of Europe; but it changes essentially to white colour. It is now clear in what sense a
thing is in motion essentially, accidentally, or in respect of something other than itself, and in what sense the
phrase 'itself directly' is used in the case both of the mover and of the moved: and it is also clear that the
motion is not in the form but in that which is in motion, that is to say 'the movable in activity'. Now
accidental change we may leave out of account: for it is to be found in everything, at any time, and in any
respect. Change which is not accidental on the other hand is not to be found in everything, but only in
contraries, in things intermediate contraries, and in contradictories, as may be proved by induction. An
intermediate may be a startingpoint of change, since for the purposes of the change it serves as contrary to
either of two contraries: for the intermediate is in a sense the extremes. Hence we speak of the intermediate as
in a sense a contrary relatively to the extremes and of either extreme as a contrary relatively to the
intermediate: for instance, the central note is low relativelyto the highest and high relatively to the lowest,
and grey is light relatively to black and dark relatively to white.
And since every change is from something to somethingas the word itself (metabole) indicates, implying
something 'after' (meta) something else, that is to say something earlier and something laterthat which
changes must change in one of four ways: from subject to subject, from subject to nonsubject, from
nonsubject to subject, or from nonsubject to nonsubject, where by 'subject' I mean what is affirmatively
expressed. So it follows necessarily from what has been said above that there are only three kinds of change,
that from subject to subject, that from subject to nonsubject, and that from nonsubject to subject: for the
fourth conceivable kind, that from nonsubject to nonsubject, is not change, as in that case there is no
opposition either of contraries or of contradictories.
Now change from nonsubject to subject, the relation being that of contradiction, is 'coming to
be''unqualified coming to be' when the change takes place in an unqualified way, 'particular coming to be'
when the change is change in a particular character: for instance, a change from notwhite to white is a
coming to be of the particular thing, white, while change from unqualified notbeing to being is coming to be
in an unqualified way, in respect of which we say that a thing 'comes to be' without qualification, not that it
'comes to be' some particular thing. Change from subject to nonsubject is 'perishing''unqualified perishing'
when the change is from being to notbeing, 'particular perishing' when the change is to the opposite
negation, the distinction being the same as that made in the case of coming to be.
Now the expression 'notbeing' is used in several senses: and there can be motion neither of that which 'is
not' in respect of the affirmation or negation of a predicate, nor of that which 'is not' in the sense that it only
potentially 'is', that is to say the opposite of that which actually 'is' in an unqualified sense: for although that
which is 'notwhite' or 'notgood' may nevertheless he in motion accidentally (for example that which is
'notwhite' might be a man), yet that which is without qualification 'notsoandso' cannot in any sense be in
motion: therefore it is impossible for that which is not to be in motion. This being so, it follows that
'becoming' cannot be a motion: for it is that which 'is not' that 'becomes'. For however true it may be that it
accidentally 'becomes', it is nevertheless correct to say that it is that which 'is not' that in an unqualified sense
'becomes'. And similarly it is impossible for that which 'is not' to be at rest.
There are these difficulties, then, in the way of the assumption that that which 'is not' can be in motion: and it
may be further objected that, whereas everything which is in motion is in space, that which 'is not' is not in
PHYSICS
Book V 57
Page No 61
space: for then it would be somewhere.
So, too, 'perishing' is not a motion: for a motion has for its contrary either another motion or rest, whereas
'perishing' is the contrary of 'becoming'.
Since, then, every motion is a kind of change, and there are only the three kinds of change mentioned above,
and since of these three those which take the form of 'becoming' and 'perishing', that is to say those which
imply a relation of contradiction, are not motions: it necessarily follows that only change from subject to
subject is motion. And every such subject is either a contrary or an intermediate (for a privation may be
allowed to rank as a contrary) and can be affirmatively expressed, as naked, toothless, or black. If, then, the
categories are severally distinguished as Being, Quality, Place, Time, Relation, Quantity, and Activity or
Passivity, it necessarily follows that there are three kinds of motionqualitative, quantitative, and local.
2
In respect of Substance there is no motion, because Substance has no contrary among things that are. Nor is
there motion in respect of Relation: for it may happen that when one correlative changes, the other, although
this does not itself change, is no longer applicable, so that in these cases the motion is accidental. Nor is there
motion in respect of Agent and Patientin fact there can never be motion of mover and moved, because there
cannot be motion of motion or becoming of becoming or in general change of change.
For in the first place there are two senses in which motion of motion is conceivable. (1) The motion of which
there is motion might be conceived as subject; e.g. a man is in motion because he changes from fair to dark.
Can it be that in this sense motion grows hot or cold, or changes place, or increases or decreases? Impossible:
for change is not a subject. Or (2) can there be motion of motion in the sense that some other subject changes
from a change to another mode of being, as e.g. a man changes from falling ill to getting well? Even this is
possible only in an accidental sense. For, whatever the subject may be, movement is change from one form to
another. (And the same holds good of becoming and perishing, except that in these processes we have a
change to a particular kind of opposite, while the other, motion, is a change to a different kind.) So, if there is
to be motion of motion, that which is changing from health to sickness must simultaneously be changing
from this very change to another. It is clear, then, that by the time that it has become sick, it must also have
changed to whatever may be the other change concerned (for that it should be at rest, though logically
possible, is excluded by the theory). Moreover this other can never be any casual change, but must be a
change from something definite to some other definite thing. So in this case it must be the opposite change,
viz. convalescence. It is only accidentally that there can be change of change, e.g. there is a change from
remembering to forgetting only because the subject of this change changes at one time to knowledge, at
another to ignorance.
In the second place, if there is to be change of change and becoming of becoming, we shall have an infinite
regress. Thus if one of a series of changes is to be a change of change, the preceding change must also be so:
e.g. if simple becoming was ever in process of becoming, then that which was becoming simple becoming
was also in process of becoming, so that we should not yet have arrived at what was in process of simple
becoming but only at what was already in process of becoming in process of becoming. And this again was
sometime in process of becoming, so that even then we should not have arrived at what was in process of
simple becoming. And since in an infinite series there is no first term, here there will be no first stage and
therefore no following stage either. On this hypothesis, then, nothing can become or be moved or change.
Thirdly, if a thing is capable of any particular motion, it is also capable of the corresponding contrary motion
or the corresponding coming to rest, and a thing that is capable of becoming is also capable of perishing:
consequently, if there be becoming of becoming, that which is in process of becoming is in process of
PHYSICS
2 58
Page No 62
perishing at the very moment when it has reached the stage of becoming: since it cannot be in process of
perishing when it is just beginning to become or after it has ceased to become: for that which is in process of
perishing must be in existence.
Fourthly, there must be a substrate underlying all processes of becoming and changing. What can this be in
the present case? It is either the body or the soul that undergoes alteration: what is it that correspondingly
becomes motion or becoming? And again what is the goal of their motion? It must be the motion or
becoming of something from something to something else. But in what sense can this be so? For the
becoming of learning cannot be learning: so neither can the becoming of becoming be becoming, nor can the
becoming of any process be that process.
Finally, since there are three kinds of motion, the substratum and the goal of motion must be one or other of
these, e.g. locomotion will have to be altered or to be locally moved.
To sum up, then, since everything that is moved is moved in one of three ways, either accidentally, or
partially, or essentially, change can change only accidentally, as e.g. when a man who is being restored to
health runs or learns: and accidental change we have long ago decided to leave out of account.
Since, then, motion can belong neither to Being nor to Relation nor to Agent and Patient, it remains that there
can be motion only in respect of Quality, Quantity, and Place: for with each of these we have a pair of
contraries. Motion in respect of Quality let us call alteration, a general designation that is used to include both
contraries: and by Quality I do not here mean a property of substance (in that sense that which constitutes a
specific distinction is a quality) but a passive quality in virtue of which a thing is said to be acted on or to be
incapable of being acted on. Motion in respect of Quantity has no name that includes both contraries, but it is
called increase or decrease according as one or the other is designated: that is to say motion in the direction of
complete magnitude is increase, motion in the contrary direction is decrease. Motion in respect of Place has
no name either general or particular: but we may designate it by the general name of locomotion, though
strictly the term 'locomotion' is applicable to things that change their place only when they have not the
power to come to a stand, and to things that do not move themselves locally.
Change within the same kind from a lesser to a greater or from a greater to a lesser degree is alteration: for it
is motion either from a contrary or to a contrary, whether in an unqualified or in a qualified sense: for change
to a lesser degree of a quality will be called change to the contrary of that quality, and change to a greater
degree of a quality will be regarded as change from the contrary of that quality to the quality itself. It makes
no difference whether the change be qualified or unqualified, except that in the former case the contraries will
have to be contrary to one another only in a qualified sense: and a thing's possessing a quality in a greater or
in a lesser degree means the presence or absence in it of more or less of the opposite quality. It is now clear,
then, that there are only these three kinds of motion.
The term 'immovable' we apply in the first place to that which is absolutely incapable of being moved (just as
we correspondingly apply the term invisible to sound); in the second place to that which is moved with
difficulty after a long time or whose movement is slow at the startin fact, what we describe as hard to move;
and in the third place to that which is naturally designed for and capable of motion, but is not in motion
when, where, and as it naturally would be so. This last is the only kind of immovable thing of which I use the
term 'being at rest': for rest is contrary to motion, so that rest will be negation of motion in that which is
capable of admitting motion.
The foregoing remarks are sufficient to explain the essential nature of motion and rest, the number of kinds of
change, and the different varieties of motion.
PHYSICS
2 59
Page No 63
3
Let us now proceed to define the terms 'together' and 'apart', 'in contact', 'between', 'in succession',
'contiguous', and 'continuous', and to show in what circumstances each of these terms is naturally applicable.
Things are said to be together in place when they are in one place (in the strictest sense of the word 'place')
and to be apart when they are in different places.
Things are said to be in contact when their extremities are together.
That which a changing thing, if it changes continuously in a natural manner, naturally reaches before it
reaches that to which it changes last, is between. Thus 'between' implies the presence of at least three things:
for in a process of change it is the contrary that is 'last': and a thing is moved continuously if it leaves no gap
or only the smallest possible gap in the materialnot in the time (for a gap in the time does not prevent things
having a 'between', while, on the other hand, there is nothing to prevent the highest note sounding
immediately after the lowest) but in the material in which the motion takes place. This is manifestly true not
only in local changes but in every other kind as well. (Now every change implies a pair of opposites, and
opposites may be either contraries or contradictories; since then contradiction admits of no mean term, it is
obvious that 'between' must imply a pair of contraries) That is locally contrary which is most distant in a
straight line: for the shortest line is definitely limited, and that which is definitely limited constitutes a
measure.
A thing is 'in succession' when it is after the beginning in position or in form or in some other respect in
which it is definitely so regarded, and when further there is nothing of the same kind as itself between it and
that to which it is in succession, e.g. a line or lines if it is a line, a unit or units if it is a unit, a house if it is a
house (there is nothing to prevent something of a different kind being between). For that which is in
succession is in succession to a particular thing, and is something posterior: for one is not 'in succession' to
two, nor is the first day of the month to be second: in each case the latter is 'in succession' to the former.
A thing that is in succession and touches is 'contiguous'. The 'continuous' is a subdivision of the contiguous:
things are called continuous when the touching limits of each become one and the same and are, as the word
implies, contained in each other: continuity is impossible if these extremities are two. This definition makes it
plain that continuity belongs to things that naturally in virtue of their mutual contact form a unity. And in
whatever way that which holds them together is one, so too will the whole be one, e.g. by a rivet or glue or
contact or organic union.
It is obvious that of these terms 'in succession' is first in order of analysis: for that which touches is
necessarily in succession, but not everything that is in succession touches: and so succession is a property of
things prior in definition, e.g. numbers, while contact is not. And if there is continuity there is necessarily
contact, but if there is contact, that alone does not imply continuity: for the extremities of things may be
'together' without necessarily being one: but they cannot be one without being necessarily together. So natural
junction is last in coming to be: for the extremities must necessarily come into contact if they are to be
naturally joined: but things that are in contact are not all naturally joined, while there is no contact clearly
there is no natural junction either. Hence, if as some say 'point' and 'unit' have an independent existence of
their own, it is impossible for the two to be identical: for points can touch while units can only be in
succession. Moreover, there can always be something between points (for all lines are intermediate between
points), whereas it is not necessary that there should possibly be anything between units: for there can be
nothing between the numbers one and two.
We have now defined what is meant by 'together' and 'apart', 'contact', 'between' and 'in succession',
PHYSICS
3 60
Page No 64
'contiguous' and 'continuous': and we have shown in what circumstances each of these terms is applicable.
4
There are many senses in which motion is said to be 'one': for we use the term 'one' in many senses.
Motion is one generically according to the different categories to which it may be assigned: thus any
locomotion is one generically with any other locomotion, whereas alteration is different generically from
locomotion.
Motion is one specifically when besides being one generically it also takes place in a species incapable of
subdivision: e.g. colour has specific differences: therefore blackening and whitening differ specifically; but at
all events every whitening will be specifically the same with every other whitening and every blackening
with every other blackening. But white is not further subdivided by specific differences: hence any whitening
is specifically one with any other whitening. Where it happens that the genus is at the same time a species, it
is clear that the motion will then in a sense be one specifically though not in an unqualified sense: learning is
an example of this, knowledge being on the one hand a species of apprehension and on the other hand a genus
including the various knowledges. A difficulty, however, may be raised as to whether a motion is specifically
one when the same thing changes from the same to the same, e.g. when one point changes again and again
from a particular place to a particular place: if this motion is specifically one, circular motion will be the
same as rectilinear motion, and rolling the same as walking. But is not this difficulty removed by the
principle already laid down that if that in which the motion takes place is specifically different (as in the
present instance the circular path is specifically different from the straight) the motion itself is also different?
We have explained, then, what is meant by saying that motion is one generically or one specifically.
Motion is one in an unqualified sense when it is one essentially or numerically: and the following distinctions
will make clear what this kind of motion is. There are three classes of things in connexion with which we
speak of motion, the 'that which', the 'that in which', and the 'that during which'. I mean that there must he
something that is in motion, e.g. a man or gold, and it must be in motion in something, e.g. a place or an
affection, and during something, for all motion takes place during a time. Of these three it is the thing in
which the motion takes place that makes it one generically or specifically, it is the thing moved that makes
the motion one in subject, and it is the time that makes it consecutive: but it is the three together that make it
one without qualification: to effect this, that in which the motion takes place (the species) must be one and
incapable of subdivision, that during which it takes place (the time) must be one and unintermittent, and that
which is in motion must be onenot in an accidental sense (i.e. it must be one as the white that blackens is
one or Coriscus who walks is one, not in the accidental sense in which Coriscus and white may be one), nor
merely in virtue of community of nature (for there might be a case of two men being restored to health at the
same time in the same way, e.g. from inflammation of the eye, yet this motion is not really one, but only
specifically one).
Suppose, however, that Socrates undergoes an alteration specifically the same but at one time and again at
another: in this case if it is possible for that which ceased to be again to come into being and remain
numerically the same, then this motion too will be one: otherwise it will be the same but not one. And akin to
this difficulty there is another; viz. is health one? and generally are the states and affections in bodies
severally one in essence although (as is clear) the things that contain them are obviously in motion and in
flux? Thus if a person's health at daybreak and at the present moment is one and the same, why should not
this health be numerically one with that which he recovers after an interval? The same argument applies in
each case. There is, however, we may answer, this difference: that if the states are two then it follows simply
from this fact that the activities must also in point of number be two (for only that which is numerically one
can give rise to an activity that is numerically one), but if the state is one, this is not in itself enough to make
PHYSICS
4 61
Page No 65
us regard the activity also as one: for when a man ceases walking, the walking no longer is, but it will again
be if he begins to walk again. But, be this as it may, if in the above instance the health is one and the same,
then it must be possible for that which is one and the same to come to be and to cease to be many times.
However, these difficulties lie outside our present inquiry.
Since every motion is continuous, a motion that is one in an unqualified sense must (since every motion is
divisible) be continuous, and a continuous motion must be one. There will not be continuity between any
motion and any other indiscriminately any more than there is between any two things chosen at random in
any other sphere: there can be continuity only when the extremities of the two things are one. Now some
things have no extremities at all: and the extremities of others differ specifically although we give them the
same name of 'end': how should e.g. the 'end' of a line and the 'end' of walking touch or come to be one?
Motions that are not the same either specifically or generically may, it is true, be consecutive (e.g. a man may
run and then at once fall ill of a fever), and again, in the torchrace we have consecutive but not continuous
locomotion: for according to our definition there can be continuity only when the ends of the two things are
one. Hence motions may be consecutive or successive in virtue of the time being continuous, but there can be
continuity only in virtue of the motions themselves being continuous, that is when the end of each is one with
the end of the other. Motion, therefore, that is in an unqualified sense continuous and one must be specifically
the same, of one thing, and in one time. Unity is required in respect of time in order that there may be no
interval of immobility, for where there is intermission of motion there must be rest, and a motion that
includes intervals of rest will be not one but many, so that a motion that is interrupted by stationariness is not
one or continuous, and it is so interrupted if there is an interval of time. And though of a motion that is not
specifically one (even if the time is unintermittent) the time is one, the motion is specifically different, and so
cannot really be one, for motion that is one must be specifically one, though motion that is specifically one is
not necessarily one in an unqualified sense. We have now explained what we mean when we call a motion
one without qualification.
Further, a motion is also said to be one generically, specifically, or essentially when it is complete, just as in
other cases completeness and wholeness are characteristics of what is one: and sometimes a motion even if
incomplete is said to be one, provided only that it is continuous.
And besides the cases already mentioned there is another in which a motion is said to be one, viz. when it is
regular: for in a sense a motion that is irregular is not regarded as one, that title belonging rather to that which
is regular, as a straight line is regular, the irregular being as such divisible. But the difference would seem to
be one of degree. In every kind of motion we may have regularity or irregularity: thus there may be regular
alteration, and locomotion in a regular path, e.g. in a circle or on a straight line, and it is the same with regard
to increase and decrease. The difference that makes a motion irregular is sometimes to be found in its path:
thus a motion cannot be regular if its path is an irregular magnitude, e.g. a broken line, a spiral, or any other
magnitude that is not such that any part of it taken at random fits on to any other that may be chosen.
Sometimes it is found neither in the place nor in the time nor in the goal but in the manner of the motion: for
in some cases the motion is differentiated by quickness and slowness: thus if its velocity is uniform a motion
is regular, if not it is irregular. So quickness and slowness are not species of motion nor do they constitute
specific differences of motion, because this distinction occurs in connexion with all the distinct species of
motion. The same is true of heaviness and lightness when they refer to the same thing: e.g. they do not
specifically distinguish earth from itself or fire from itself. Irregular motion, therefore, while in virtue of
being continuous it is one, is so in a lesser degree, as is the case with locomotion in a broken line: and a lesser
degree of something always means an admixture of its contrary. And since every motion that is one can be
both regular and irregular, motions that are consecutive but not specifically the same cannot be one and
continuous: for how should a motion composed of alteration and locomotion be regular? If a motion is to be
regular its parts ought to fit one another.
PHYSICS
4 62
Page No 66
5
We have further to determine what motions are contrary to each other, and to determine similarly how it is
with rest. And we have first to decide whether contrary motions are motions respectively from and to the
same thing, e.g. a motion from health and a motion to health (where the opposition, it would seem, is of the
same kind as that between coming to be and ceasing to be); or motions respectively from contraries, e.g. a
motion from health and a motion from disease; or motions respectively to contraries, e.g. a motion to health
and a motion to disease; or motions respectively from a contrary and to the opposite contrary, e.g. a motion
from health and a motion to disease; or motions respectively from a contrary to the opposite contrary and
from the latter to the former, e.g. a motion from health to disease and a motion from disease to health: for
motions must be contrary to one another in one or more of these ways, as there is no other way in which they
can be opposed.
Now motions respectively from a contrary and to the opposite contrary, e.g. a motion from health and a
motion to disease, are not contrary motions: for they are one and the same. (Yet their essence is not the same,
just as changing from health is different from changing to disease.) Nor are motion respectively from a
contrary and from the opposite contrary contrary motions, for a motion from a contrary is at the same time a
motion to a contrary or to an intermediate (of this, however, we shall speak later), but changing to a contrary
rather than changing from a contrary would seem to be the cause of the contrariety of motions, the latter
being the loss, the former the gain, of contrariness. Moreover, each several motion takes its name rather from
the goal than from the startingpoint of change, e.g. motion to health we call convalescence, motion to
disease sickening. Thus we are left with motions respectively to contraries, and motions respectively to
contraries from the opposite contraries. Now it would seem that motions to contraries are at the same time
motions from contraries (though their essence may not be the same; 'to health' is distinct, I mean, from 'from
disease', and 'from health' from 'to disease').
Since then change differs from motion (motion being change from a particular subject to a particular subject),
it follows that contrary motions are motions respectively from a contrary to the opposite contrary and from
the latter to the former, e.g. a motion from health to disease and a motion from disease to health. Moreover,
the consideration of particular examples will also show what kinds of processes are generally recognized as
contrary: thus falling ill is regarded as contrary to recovering one's health, these processes having contrary
goals, and being taught as contrary to being led into error by another, it being possible to acquire error, like
knowledge, either by one's own agency or by that of another. Similarly we have upward locomotion and
downward locomotion, which are contrary lengthwise, locomotion to the right and locomotion to the left,
which are contrary breadthwise, and forward locomotion and backward locomotion, which too are contraries.
On the other hand, a process simply to a contrary, e.g. that denoted by the expression 'becoming white', where
no startingpoint is specified, is a change but not a motion. And in all cases of a thing that has no contrary we
have as contraries change from and change to the same thing. Thus coming to be is contrary to ceasing to be,
and losing to gaining. But these are changes and not motions. And wherever a pair of contraries admit of an
intermediate, motions to that intermediate must be held to be in a sense motions to one or other of the
contraries: for the intermediate serves as a contrary for the purposes of the motion, in whichever direction the
change may be, e.g. grey in a motion from grey to white takes the place of black as startingpoint, in a
motion from white to grey it takes the place of black as goal, and in a motion from black to grey it takes the
place of white as goal: for the middle is opposed in a sense to either of the extremes, as has been said above.
Thus we see that two motions are contrary to each other only when one is a motion from a contrary to the
opposite contrary and the other is a motion from the latter to the former.
PHYSICS
5 63
Page No 67
6
But since a motion appears to have contrary to it not only another motion but also a state of rest, we must
determine how this is so. A motion has for its contrary in the strict sense of the term another motion, but it
also has for an opposite a state of rest (for rest is the privation of motion and the privation of anything may be
called its contrary), and motion of one kind has for its opposite rest of that kind, e.g. local motion has local
rest. This statement, however, needs further qualification: there remains the question, is the opposite of
remaining at a particular place motion from or motion to that place? It is surely clear that since there are two
subjects between which motion takes place, motion from one of these (A) to its contrary (B) has for its
opposite remaining in A while the reverse motion has for its opposite remaining in B. At the same time these
two are also contrary to each other: for it would be absurd to suppose that there are contrary motions and not
opposite states of rest. States of rest in contraries are opposed. To take an example, a state of rest in health is
(1) contrary to a state of rest in disease, and (2) the motion to which it is contrary is that from health to
disease. For (2) it would be absurd that its contrary motion should be that from disease to health, since
motion to that in which a thing is at rest is rather a coming to rest, the coming to rest being found to come
into being simultaneously with the motion; and one of these two motions it must be. And (1) rest in whiteness
is of course not contrary to rest in health.
Of all things that have no contraries there are opposite changes (viz. change from the thing and change to the
thing, e.g. change from being and change to being), but no motion. So, too, of such things there is no
remaining though there is absence of change. Should there be a particular subject, absence of change in its
being will be contrary to absence of change in its notbeing. And here a difficulty may be raised: if
notbeing is not a particular something, what is it, it may be asked, that is contrary to absence of change in a
thing's being? and is this absence of change a state of rest? If it is, then either it is not true that every state of
rest is contrary to a motion or else coming to be and ceasing to be are motion. It is clear then that, since we
exclude these from among motions, we must not say that this absence of change is a state of rest: we must say
that it is similar to a state of rest and call it absence of change. And it will have for its contrary either nothing
or absence of change in the thing's notbeing, or the ceasing to be of the thing: for such ceasing to be is
change from it and the thing's coming to be is change to it.
Again, a further difficulty may be raised. How is it, it may be asked, that whereas in local change both
remaining and moving may be natural or unnatural, in the other changes this is not so? e.g. alteration is not
now natural and now unnatural, for convalescence is no more natural or unnatural than falling ill, whitening
no more natural or unnatural than blackening; so, too, with increase and decrease: these are not contrary to
each other in the sense that either of them is natural while the other is unnatural, nor is one increase contrary
to another in this sense; and the same account may be given of becoming and perishing: it is not true that
becoming is natural and perishing unnatural (for growing old is natural), nor do we observe one becoming to
be natural and another unnatural. We answer that if what happens under violence is unnatural, then violent
perishing is unnatural and as such contrary to natural perishing. Are there then also some becomings that are
violent and not the result of natural necessity, and are therefore contrary to natural becomings, and violent
increases and decreases, e.g. the rapid growth to maturity of profligates and the rapid ripening of seeds even
when not packed close in the earth? And how is it with alterations? Surely just the same: we may say that
some alterations are violent while others are natural, e.g. patients alter naturally or unnaturally according as
they throw off fevers on the critical days or not. But, it may be objected, then we shall have perishings
contrary to one another, not to becoming. Certainly: and why should not this in a sense be so? Thus it is so if
one perishing is pleasant and another painful: and so one perishing will be contrary to another not in an
unqualified sense, but in so far as one has this quality and the other that.
Now motions and states of rest universally exhibit contrariety in the manner described above, e.g. upward
motion and rest above are respectively contrary to downward motion and rest below, these being instances of
PHYSICS
6 64
Page No 68
local contrariety; and upward locomotion belongs naturally to fire and downward to earth, i.e. the
locomotions of the two are contrary to each other. And again, fire moves up naturally and down unnaturally:
and its natural motion is certainly contrary to its unnatural motion. Similarly with remaining: remaining
above is contrary to motion from above downwards, and to earth this remaining comes unnaturally, this
motion naturally. So the unnatural remaining of a thing is contrary to its natural motion, just as we find a
similar contrariety in the motion of the same thing: one of its motions, the upward or the downward, will be
natural, the other unnatural.
Here, however, the question arises, has every state of rest that is not permanent a becoming, and is this
becoming a coming to a standstill? If so, there must be a becoming of that which is at rest unnaturally, e.g. of
earth at rest above: and therefore this earth during the time that it was being carried violently upward was
coming to a standstill. But whereas the velocity of that which comes to a standstill seems always to increase,
the velocity of that which is carried violently seems always to decrease: so it will he in a state of rest without
having become so. Moreover 'coming to a standstill' is generally recognized to be identical or at least
concomitant with the locomotion of a thing to its proper place.
There is also another difficulty involved in the view that remaining in a particular place is contrary to motion
from that place. For when a thing is moving from or discarding something, it still appears to have that which
is being discarded, so that if a state of rest is itself contrary to the motion from the state of rest to its contrary,
the contraries rest and motion will be simultaneously predicable of the same thing. May we not say, however,
that in so far as the thing is still stationary it is in a state of rest in a qualified sense? For, in fact, whenever a
thing is in motion, part of it is at the startingpoint while part is at the goal to which it is changing: and
consequently a motion finds its true contrary rather in another motion than in a state of rest.
With regard to motion and rest, then, we have now explained in what sense each of them is one and under
what conditions they exhibit contrariety.
[With regard to coming to a standstill the question may be raised whether there is an opposite state of rest to
unnatural as well as to natural motions. It would be absurd if this were not the case: for a thing may remain
still merely under violence: thus we shall have a thing being in a nonpermanent state of rest without having
become so. But it is clear that it must be the case: for just as there is unnatural motion, so, too, a thing may be
in an unnatural state of rest. Further, some things have a natural and an unnatural motion, e.g. fire has a
natural upward motion and an unnatural downward motion: is it, then, this unnatural downward motion or is
it the natural downward motion of earth that is contrary to the natural upward motion? Surely it is clear that
both are contrary to it though not in the same sense: the natural motion of earth is contrary inasmuch as the
motion of fire is also natural, whereas the upward motion of fire as being natural is contrary to the downward
motion of fire as being unnatural. The same is true of the corresponding cases of remaining. But there would
seem to be a sense in which a state of rest and a motion are opposites.]
Book VI
1
Now if the terms 'continuous', 'in contact', and 'in succession' are understood as defined above things being
'continuous' if their extremities are one, 'in contact' if their extremities are together, and 'in succession' if there
is nothing of their own kind intermediate between themnothing that is continuous can be composed 'of
indivisibles': e.g. a line cannot be composed of points, the line being continuous and the point indivisible. For
the extremities of two points can neither be one (since of an indivisible there can be no extremity as distinct
from some other part) nor together (since that which has no parts can have no extremity, the extremity and
the thing of which it is the extremity being distinct).
PHYSICS
Book VI 65
Page No 69
Moreover, if that which is continuous is composed of points, these points must be either continuous or in
contact with one another: and the same reasoning applies in the case of all indivisibles. Now for the reason
given above they cannot be continuous: and one thing can be in contact with another only if whole is in
contact with whole or part with part or part with whole. But since indivisibles have no parts, they must be in
contact with one another as whole with whole. And if they are in contact with one another as whole with
whole, they will not be continuous: for that which is continuous has distinct parts: and these parts into which
it is divisible are different in this way, i.e. spatially separate.
Nor, again, can a point be in succession to a point or a moment to a moment in such a way that length can be
composed of points or time of moments: for things are in succession if there is nothing of their own kind
intermediate between them, whereas that which is intermediate between points is always a line and that which
is intermediate between moments is always a period of time.
Again, if length and time could thus be composed of indivisibles, they could be divided into indivisibles,
since each is divisible into the parts of which it is composed. But, as we saw, no continuous thing is divisible
into things without parts. Nor can there be anything of any other kind intermediate between the parts or
between the moments: for if there could be any such thing it is clear that it must be either indivisible or
divisible, and if it is divisible, it must be divisible either into indivisibles or into divisibles that are infinitely
divisible, in which case it is continuous.
Moreover, it is plain that everything continuous is divisible into divisibles that are infinitely divisible: for if it
were divisible into indivisibles, we should have an indivisible in contact with an indivisible, since the
extremities of things that are continuous with one another are one and are in contact.
The same reasoning applies equally to magnitude, to time, and to motion: either all of these are composed of
indivisibles and are divisible into indivisibles, or none. This may be made clear as follows. If a magnitude is
composed of indivisibles, the motion over that magnitude must be composed of corresponding indivisible
motions: e.g. if the magnitude ABG is composed of the indivisibles A, B, G, each corresponding part of the
motion DEZ of O over ABG is indivisible. Therefore, since where there is motion there must be something
that is in motion, and where there is something in motion there must be motion, therefore the beingmoved
will also be composed of indivisibles. So O traversed A when its motion was D, B when its motion was E,
and G similarly when its motion was Z. Now a thing that is in motion from one place to another cannot at the
moment when it was in motion both be in motion and at the same time have completed its motion at the place
to which it was in motion: e.g. if a man is walking to Thebes, he cannot be walking to Thebes and at the same
time have completed his walk to Thebes: and, as we saw, O traverses a the partless section A in virtue of the
presence of the motion D. Consequently, if O actually passed through A after being in process of passing
through, the motion must be divisible: for at the time when O was passing through, it neither was at rest nor
had completed its passage but was in an intermediate state: while if it is passing through and has completed
its passage at the same moment, then that which is walking will at the moment when it is walking have
completed its walk and will be in the place to which it is walking; that is to say, it will have completed its
motion at the place to which it is in motion. And if a thing is in motion over the whole KBG and its motion is
the three D, E, and Z, and if it is not in motion at all over the partless section A but has completed its motion
over it, then the motion will consist not of motions but of starts, and will take place by a thing's having
completed a motion without being in motion: for on this assumption it has completed its passage through A
without passing through it. So it will be possible for a thing to have completed a walk without ever walking:
for on this assumption it has completed a walk over a particular distance without walking over that distance.
Since, then, everything must be either at rest or in motion, and O is therefore at rest in each of the sections A,
B, and G, it follows that a thing can be continuously at rest and at the same time in motion: for, as we saw, O
is in motion over the whole ABG and at rest in any part (and consequently in the whole) of it. Moreover, if
the indivisibles composing DEZ are motions, it would be possible for a thing in spite of the presence in it of
motion to be not in motion but at rest, while if they are not motions, it would be possible for motion to be
PHYSICS
Book VI 66
Page No 70
composed of something other than motions.
And if length and motion are thus indivisible, it is neither more nor less necessary that time also be similarly
indivisible, that is to say be composed of indivisible moments: for if the whole distance is divisible and an
equal velocity will cause a thing to pass through less of it in less time, the time must also be divisible, and
conversely, if the time in which a thing is carried over the section A is divisible, this section A must also be
divisible.
2
And since every magnitude is divisible into magnitudesfor we have shown that it is impossible for anything
continuous to be composed of indivisible parts, and every magnitude is continuousit necessarily follows that
the quicker of two things traverses a greater magnitude in an equal time, an equal magnitude in less time, and
a greater magnitude in less time, in conformity with the definition sometimes given of 'the quicker'. Suppose
that A is quicker than B. Now since of two things that which changes sooner is quicker, in the time ZH, in
which A has changed from G to D, B will not yet have arrived at D but will be short of it: so that in an equal
time the quicker will pass over a greater magnitude. More than this, it will pass over a greater magnitude in
less time: for in the time in which A has arrived at D, B being the slower has arrived, let us say, at E. Then
since A has occupied the whole time ZH in arriving at D, will have arrived at O in less time than this, say ZK.
Now the magnitude GO that A has passed over is greater than the magnitude GE, and the time ZK is less than
the whole time ZH: so that the quicker will pass over a greater magnitude in less time. And from this it is also
clear that the quicker will pass over an equal magnitude in less time than the slower. For since it passes over
the greater magnitude in less time than the slower, and (regarded by itself) passes over LM the greater in
more time than LX the lesser, the time PRh in which it passes over LM will be more than the time PS, which
it passes over LX: so that, the time PRh being less than the time PCh in which the slower passes over LX, the
time PS will also be less than the time PX: for it is less than the time PRh, and that which is less than
something else that is less than a thing is also itself less than that thing. Hence it follows that the quicker will
traverse an equal magnitude in less time than the slower. Again, since the motion of anything must always
occupy either an equal time or less or more time in comparison with that of another thing, and since, whereas
a thing is slower if its motion occupies more time and of equal velocity if its motion occupies an equal time,
the quicker is neither of equal velocity nor slower, it follows that the motion of the quicker can occupy
neither an equal time nor more time. It can only be, then, that it occupies less time, and thus we get the
necessary consequence that the quicker will pass over an equal magnitude (as well as a greater) in less time
than the slower.
And since every motion is in time and a motion may occupy any time, and the motion of everything that is in
motion may be either quicker or slower, both quicker motion and slower motion may occupy any time: and
this being so, it necessarily follows that time also is continuous. By continuous I mean that which is divisible
into divisibles that are infinitely divisible: and if we take this as the definition of continuous, it follows
necessarily that time is continuous. For since it has been shown that the quicker will pass over an equal
magnitude in less time than the slower, suppose that A is quicker and B slower, and that the slower has
traversed the magnitude GD in the time ZH. Now it is clear that the quicker will traverse the same magnitude
in less time than this: let us say in the time ZO. Again, since the quicker has passed over the whole D in the
time ZO, the slower will in the same time pass over GK, say, which is less than GD. And since B, the slower,
has passed over GK in the time ZO, the quicker will pass over it in less time: so that the time ZO will again
be divided. And if this is divided the magnitude GK will also be divided just as GD was: and again, if the
magnitude is divided, the time will also be divided. And we can carry on this process for ever, taking the
slower after the quicker and the quicker after the slower alternately, and using what has been demonstrated at
each stage as a new point of departure: for the quicker will divide the time and the slower will divide the
length. If, then, this alternation always holds good, and at every turn involves a division, it is evident that all
PHYSICS
2 67
Page No 71
time must be continuous. And at the same time it is clear that all magnitude is also continuous; for the
divisions of which time and magnitude respectively are susceptible are the same and equal.
Moreover, the current popular arguments make it plain that, if time is continuous, magnitude is continuous
also, inasmuch as a thing asses over half a given magnitude in half the time taken to cover the whole: in fact
without qualification it passes over a less magnitude in less time; for the divisions of time and of magnitude
will be the same. And if either is infinite, so is the other, and the one is so in the same way as the other; i.e. if
time is infinite in respect of its extremities, length is also infinite in respect of its extremities: if time is
infinite in respect of divisibility, length is also infinite in respect of divisibility: and if time is infinite in both
respects, magnitude is also infinite in both respects.
Hence Zeno's argument makes a false assumption in asserting that it is impossible for a thing to pass over or
severally to come in contact with infinite things in a finite time. For there are two senses in which length and
time and generally anything continuous are called 'infinite': they are called so either in respect of divisibility
or in respect of their extremities. So while a thing in a finite time cannot come in contact with things
quantitatively infinite, it can come in contact with things infinite in respect of divisibility: for in this sense the
time itself is also infinite: and so we find that the time occupied by the passage over the infinite is not a finite
but an infinite time, and the contact with the infinites is made by means of moments not finite but infinite in
number.
The passage over the infinite, then, cannot occupy a finite time, and the passage over the finite cannot occupy
an infinite time: if the time is infinite the magnitude must be infinite also, and if the magnitude is infinite, so
also is the time. This may be shown as follows. Let AB be a finite magnitude, and let us suppose that it is
traversed in infinite time G, and let a finite period GD of the time be taken. Now in this period the thing in
motion will pass over a certain segment of the magnitude: let BE be the segment that it has thus passed over.
(This will be either an exact measure of AB or less or greater than an exact measure: it makes no difference
which it is.) Then, since a magnitude equal to BE will always be passed over in an equal time, and BE
measures the whole magnitude, the whole time occupied in passing over AB will be finite: for it will be
divisible into periods equal in number to the segments into which the magnitude is divisible. Moreover, if it is
the case that infinite time is not occupied in passing over every magnitude, but it is possible to ass over some
magnitude, say BE, in a finite time, and if this BE measures the whole of which it is a part, and if an equal
magnitude is passed over in an equal time, then it follows that the time like the magnitude is finite. That
infinite time will not be occupied in passing over BE is evident if the time be taken as limited in one
direction: for as the part will be passed over in less time than the whole, the time occupied in traversing this
part must be finite, the limit in one direction being given. The same reasoning will also show the falsity of the
assumption that infinite length can be traversed in a finite time. It is evident, then, from what has been said
that neither a line nor a surface nor in fact anything continuous can be indivisible.
This conclusion follows not only from the present argument but from the consideration that the opposite
assumption implies the divisibility of the indivisible. For since the distinction of quicker and slower may
apply to motions occupying any period of time and in an equal time the quicker passes over a greater length,
it may happen that it will pass over a length twice, or one and a half times, as great as that passed over by the
slower: for their respective velocities may stand to one another in this proportion. Suppose, then, that the
quicker has in the same time been carried over a length one and a half times as great as that traversed by the
slower, and that the respective magnitudes are divided, that of the quicker, the magnitude ABGD, into three
indivisibles, and that of the slower into the two indivisibles EZ, ZH. Then the time may also be divided into
three indivisibles, for an equal magnitude will be passed over in an equal time. Suppose then that it is thus
divided into KL, LM, MN. Again, since in the same time the slower has been carried over EZ, ZH, the time
may also be similarly divided into two. Thus the indivisible will be divisible, and that which has no parts will
be passed over not in an indivisible but in a greater time. It is evident, therefore, that nothing continuous is
without parts.
PHYSICS
2 68
Page No 72
3
The present also is necessarily indivisiblethe present, that is, not in the sense in which the word is applied to
one thing in virtue of another, but in its proper and primary sense; in which sense it is inherent in all time. For
the present is something that is an extremity of the past (no part of the future being on this side of it) and also
of the future (no part of the past being on the other side of it): it is, as we have said, a limit of both. And if it
is once shown that it is essentially of this character and one and the same, it will at once be evident also that it
is indivisible.
Now the present that is the extremity of both times must be one and the same: for if each extremity were
different, the one could not be in succession to the other, because nothing continuous can be composed of
things having no parts: and if the one is apart from the other, there will be time intermediate between them,
because everything continuous is such that there is something intermediate between its limits and described
by the same name as itself. But if the intermediate thing is time, it will be divisible: for all time has been
shown to be divisible. Thus on this assumption the present is divisible. But if the present is divisible, there
will be part of the past in the future and part of the future in the past: for past time will be marked off from
future time at the actual point of division. Also the present will be a present not in the proper sense but in
virtue of something else: for the division which yields it will not be a division proper. Furthermore, there will
be a part of the present that is past and a part that is future, and it will not always be the same part that is past
or future: in fact one and the same present will not be simultaneous: for the time may be divided at many
points. If, therefore, the present cannot possibly have these characteristics, it follows that it must be the same
present that belongs to each of the two times. But if this is so it is evident that the present is also indivisible:
for if it is divisible it will be involved in the same implications as before. It is clear, then, from what has been
said that time contains something indivisible, and this is what we call a present.
We will now show that nothing can be in motion in a present. For if this is possible, there can be both quicker
and slower motion in the present. Suppose then that in the present N the quicker has traversed the distance
AB. That being so, the slower will in the same present traverse a distance less than AB, say AG. But since the
slower will have occupied the whole present in traversing AG, the quicker will occupy less than this in
traversing it. Thus we shall have a division of the present, whereas we found it to be indivisible. It is
impossible, therefore, for anything to be in motion in a present.
Nor can anything be at rest in a present: for, as we were saying, only can be at rest which is naturally
designed to be in motion but is not in motion when, where, or as it would naturally be so: since, therefore,
nothing is naturally designed to be in motion in a present, it is clear that nothing can be at rest in a present
either.
Moreover, inasmuch as it is the same present that belongs to both the times, and it is possible for a thing to be
in motion throughout one time and to be at rest throughout the other, and that which is in motion or at rest for
the whole of a time will be in motion or at rest as the case may be in any part of it in which it is naturally
designed to be in motion or at rest: this being so, the assumption that there can be motion or rest in a present
will carry with it the implication that the same thing can at the same time be at rest and in motion: for both
the times have the same extremity, viz. the present.
Again, when we say that a thing is at rest, we imply that its condition in whole and in part is at the time of
speaking uniform with what it was previously: but the present contains no 'previously': consequently, there
can be no rest in it.
It follows then that the motion of that which is in motion and the rest of that which is at rest must occupy
time.
PHYSICS
3 69
Page No 73
4
Further, everything that changes must be divisible. For since every change is from something to something,
and when a thing is at the goal of its change it is no longer changing, and when both it itself and all its parts
are at the startingpoint of its change it is not changing (for that which is in whole and in part in an unvarying
condition is not in a state of change); it follows, therefore, that part of that which is changing must be at the
startingpoint and part at the goal: for as a whole it cannot be in both or in neither. (Here by 'goal of change' I
mean that which comes first in the process of change: e.g. in a process of change from white the goal in
question will be grey, not black: for it is not necessary that that that which is changing should be at either of
the extremes.) It is evident, therefore, that everything that changes must be divisible.
Now motion is divisible in two senses. In the first place it is divisible in virtue of the time that it occupies. In
the second place it is divisible according to the motions of the several parts of that which is in motion: e.g. if
the whole AG is in motion, there will be a motion of AB and a motion of BG. That being so, let DE be the
motion of the part AB and EZ the motion of the part BG. Then the whole DZ must be the motion of AG: for
DZ must constitute the motion of AG inasmuch as DE and EZ severally constitute the motions of each of its
parts. But the motion of a thing can never be constituted by the motion of something else: consequently the
whole motion is the motion of the whole magnitude.
Again, since every motion is a motion of something, and the whole motion DZ is not the motion of either of
the parts (for each of the parts DE, EZ is the motion of one of the parts AB, BG) or of anything else (for, the
whole motion being the motion of a whole, the parts of the motion are the motions of the parts of that whole:
and the parts of DZ are the motions of AB, BG and of nothing else: for, as we saw, a motion that is one
cannot be the motion of more things than one): since this is so, the whole motion will be the motion of the
magnitude ABG.
Again, if there is a motion of the whole other than DZ, say the the of each of the arts may be subtracted from
it: and these motions will be equal to DE, EZ respectively: for the motion of that which is one must be one.
So if the whole motion OI may be divided into the motions of the parts, OI will be equal to DZ: if on the
other hand there is any remainder, say KI, this will be a motion of nothing: for it can be the motion neither of
the whole nor of the parts (as the motion of that which is one must be one) nor of anything else: for a motion
that is continuous must be the motion of things that are continuous. And the same result follows if the
division of OI reveals a surplus on the side of the motions of the parts. Consequently, if this is impossible, the
whole motion must be the same as and equal to DZ.
This then is what is meant by the division of motion according to the motions of the parts: and it must be
applicable to everything that is divisible into parts.
Motion is also susceptible of another kind of division, that according to time. For since all motion is in time
and all time is divisible, and in less time the motion is less, it follows that every motion must be divisible
according to time. And since everything that is in motion is in motion in a certain sphere and for a certain
time and has a motion belonging to it, it follows that the time, the motion, the beinginmotion, the thing that
is in motion, and the sphere of the motion must all be susceptible of the same divisions (though spheres of
motion are not all divisible in a like manner: thus quantity is essentially, quality accidentally divisible). For
suppose that A is the time occupied by the motion B. Then if all the time has been occupied by the whole
motion, it will take less of the motion to occupy half the time, less again to occupy a further subdivision of
the time, and so on to infinity. Again, the time will be divisible similarly to the motion: for if the whole
motion occupies all the time half the motion will occupy half the time, and less of the motion again will
occupy less of the time.
PHYSICS
4 70
Page No 74
In the same way the beinginmotion will also be divisible. For let G be the whole beinginmotion. Then
the beinginmotion that corresponds to half the motion will be less than the whole beinginmotion, that
which corresponds to a quarter of the motion will be less again, and so on to infinity. Moreover by setting out
successively the beinginmotion corresponding to each of the two motions DG (say) and GE, we may argue
that the whole beinginmotion will correspond to the whole motion (for if it were some other
beinginmotion that corresponded to the whole motion, there would be more than one beingin motion
corresponding to the same motion), the argument being the same as that whereby we showed that the motion
of a thing is divisible into the motions of the parts of the thing: for if we take separately the beingin motion
corresponding to each of the two motions, we shall see that the whole beingin motion is continuous.
The same reasoning will show the divisibility of the length, and in fact of everything that forms a sphere of
change (though some of these are only accidentally divisible because that which changes is so): for the
division of one term will involve the division of all. So, too, in the matter of their being finite or infinite, they
will all alike be either the one or the other. And we now see that in most cases the fact that all the terms are
divisible or infinite is a direct consequence of the fact that the thing that changes is divisible or infinite: for
the attributes 'divisible' and 'infinite' belong in the first instance to the thing that changes. That divisibility
does so we have already shown: that infinity does so will be made clear in what follows?
5
Since everything that changes changes from something to something, that which has changed must at the
moment when it has first changed be in that to which it has changed. For that which changes retires from or
leaves that from which it changes: and leaving, if not identical with changing, is at any rate a consequence of
it. And if leaving is a consequence of changing, having left is a consequence of having changed: for there is a
like relation between the two in each case.
One kind of change, then, being change in a relation of contradiction, where a thing has changed from
notbeing to being it has left notbeing. Therefore it will be in being: for everything must either be or not be.
It is evident, then, that in contradictory change that which has changed must be in that to which it has
changed. And if this is true in this kind of change, it will be true in all other kinds as well: for in this matter
what holds good in the case of one will hold good likewise in the case of the rest.
Moreover, if we take each kind of change separately, the truth of our conclusion will be equally evident, on
the ground that that that which has changed must be somewhere or in something. For, since it has left that
from which it has changed and must be somewhere, it must be either in that to which it has changed or in
something else. If, then, that which has changed to B is in something other than B, say G, it must again be
changing from G to B: for it cannot be assumed that there is no interval between G and B, since change is
continuous. Thus we have the result that the thing that has changed, at the moment when it has changed, is
changing to that to which it has changed, which is impossible: that which has changed, therefore, must be in
that to which it has changed. So it is evident likewise that that that which has come to be, at the moment
when it has come to be, will be, and that which has ceased to be will notbe: for what we have said applies
universally to every kind of change, and its truth is most obvious in the case of contradictory change. It is
clear, then, that that which has changed, at the moment when it has first changed, is in that to which it has
changed.
We will now show that the 'primary when' in which that which has changed effected the completion of its
change must be indivisible, where by 'primary' I mean possessing the characteristics in question of itself and
not in virtue of the possession of them by something else belonging to it. For let AG be divisible, and let it be
divided at B. If then the completion of change has been effected in AB or again in BG, AG cannot be the
primary thing in which the completion of change has been effected. If, on the other hand, it has been
PHYSICS
5 71
Page No 75
changing in both AB and BG (for it must either have changed or be changing in each of them), it must have
been changing in the whole AG: but our assumption was that AG contains only the completion of the change.
It is equally impossible to suppose that one part of AG contains the process and the other the completion of
the change: for then we shall have something prior to what is primary. So that in which the completion of
change has been effected must be indivisible. It is also evident, therefore, that that that in which that which
has ceased to be has ceased to be and that in which that which has come to be has come to be are indivisible.
But there are two senses of the expression 'the primary when in which something has changed'. On the one
hand it may mean the primary when containing the completion of the process of change the moment when it
is correct to say 'it has changed': on the other hand it may mean the primary when containing the beginning of
the process of change. Now the primary when that has reference to the end of the change is something really
existent: for a change may really be completed, and there is such a thing as an end of change, which we have
in fact shown to be indivisible because it is a limit. But that which has reference to the beginning is not
existent at all: for there is no such thing as a beginning of a process of change, and the time occupied by the
change does not contain any primary when in which the change began. For suppose that AD is such a primary
when. Then it cannot be indivisible: for, if it were, the moment immediately preceding the change and the
moment in which the change begins would be consecutive (and moments cannot be consecutive). Again, if
the changing thing is at rest in the whole preceding time GA (for we may suppose that it is at rest), it is at rest
in A also: so if AD is without parts, it will simultaneously be at rest and have changed: for it is at rest in A
and has changed in D. Since then AD is not without parts, it must be divisible, and the changing thing must
have changed in every part of it (for if it has changed in neither of the two parts into which AD is divided, it
has not changed in the whole either: if, on the other hand, it is in process of change in both parts, it is likewise
in process of change in the whole: and if, again, it has changed in one of the two parts, the whole is not the
primary when in which it has changed: it must therefore have changed in every part). It is evident, then, that
with reference to the beginning of change there is no primary when in which change has been effected: for
the divisions are infinite.
So, too, of that which has changed there is no primary part that has changed. For suppose that of AE the
primary part that has changed is AZ (everything that changes having been shown to be divisible): and let OI
be the time in which DZ has changed. If, then, in the whole time DZ has changed, in half the time there will
be a part that has changed, less than and therefore prior to DZ: and again there will be another part prior to
this, and yet another, and so on to infinity. Thus of that which changes there cannot be any primary part that
has changed. It is evident, then, from what has been said, that neither of that which changes nor of the time in
which it changes is there any primary part.
With regard, however, to the actual subject of changethat is to say that in respect of which a thing
changesthere is a difference to be observed. For in a process of change we may distinguish three termsthat
which changes, that in which it changes, and the actual subject of change, e.g. the man, the time, and the fair
complexion. Of these the man and the time are divisible: but with the fair complexion it is otherwise (though
they are all divisible accidentally, for that in which the fair complexion or any other quality is an accident is
divisible). For of actual subjects of change it will be seen that those which are classed as essentially, not
accidentally, divisible have no primary part. Take the case of magnitudes: let AB be a magnitude, and
suppose that it has moved from B to a primary 'where' G. Then if BG is taken to be indivisible, two things
without parts will have to be contiguous (which is impossible): if on the other hand it is taken to be divisible,
there will be something prior to G to which the magnitude has changed, and something else again prior to
that, and so on to infinity, because the process of division may be continued without end. Thus there can be
no primary 'where' to which a thing has changed. And if we take the case of quantitative change, we shall get
a like result, for here too the change is in something continuous. It is evident, then, that only in qualitative
motion can there be anything essentially indivisible.
PHYSICS
5 72
Page No 76
6
Now everything that changes changes time, and that in two senses: for the time in which a thing is said to
change may be the primary time, or on the other hand it may have an extended reference, as e.g. when we say
that a thing changes in a particular year because it changes in a particular day. That being so, that which
changes must be changing in any part of the primary time in which it changes. This is clear from our
definition of 'primary', in which the word is said to express just this: it may also, however, be made evident
by the following argument. Let ChRh be the primary time in which that which is in motion is in motion: and
(as all time is divisible) let it be divided at K. Now in the time ChK it either is in motion or is not in motion,
and the same is likewise true of the time KRh. Then if it is in motion in neither of the two parts, it will be at
rest in the whole: for it is impossible that it should be in motion in a time in no part of which it is in motion.
If on the other hand it is in motion in only one of the two parts of the time, ChRh cannot be the primary time
in which it is in motion: for its motion will have reference to a time other than ChRh. It must, then, have been
in motion in any part of ChRh.
And now that this has been proved, it is evident that everything that is in motion must have been in motion
before. For if that which is in motion has traversed the distance KL in the primary time ChRh, in half the time
a thing that is in motion with equal velocity and began its motion at the same time will have traversed half the
distance. But if this second thing whose velocity is equal has traversed a certain distance in a certain time, the
original thing that is in motion must have traversed the same distance in the same time. Hence that which is
in motion must have been in motion before.
Again, if by taking the extreme moment of the timefor it is the moment that defines the time, and time is
that which is intermediate between momentswe are enabled to say that motion has taken place in the whole
time ChRh or in fact in any period of it, motion may likewise be said to have taken place in every other such
period. But half the time finds an extreme in the point of division. Therefore motion will have taken place in
half the time and in fact in any part of it: for as soon as any division is made there is always a time defined by
moments. If, then, all time is divisible, and that which is intermediate between moments is time, everything
that is changing must have completed an infinite number of changes.
Again, since a thing that changes continuously and has not perished or ceased from its change must either be
changing or have changed in any part of the time of its change, and since it cannot be changing in a moment,
it follows that it must have changed at every moment in the time: consequently, since the moments are
infinite in number, everything that is changing must have completed an infinite number of changes.
And not only must that which is changing have changed, but that which has changed must also previously
have been changing, since everything that has changed from something to something has changed in a period
of time. For suppose that a thing has changed from A to B in a moment. Now the moment in which it has
changed cannot be the same as that in which it is at A (since in that case it would be in A and B at once): for
we have shown above that that that which has changed, when it has changed, is not in that from which it has
changed. If, on the other hand, it is a different moment, there will be a period of time intermediate between
the two: for, as we saw, moments are not consecutive. Since, then, it has changed in a period of time, and all
time is divisible, in half the time it will have completed another change, in a quarter another, and so on to
infinity: consequently when it has changed, it must have previously been changing.
Moreover, the truth of what has been said is more evident in the case of magnitude, because the magnitude
over which what is changing changes is continuous. For suppose that a thing has changed from G to D. Then
if GD is indivisible, two things without parts will be consecutive. But since this is impossible, that which is
intermediate between them must be a magnitude and divisible into an infinite number of segments:
consequently, before the change is completed, the thing changes to those segments. Everything that has
PHYSICS
6 73
Page No 77
changed, therefore, must previously have been changing: for the same proof also holds good of change with
respect to what is not continuous, changes, that is to say, between contraries and between contradictories. In
such cases we have only to take the time in which a thing has changed and again apply the same reasoning.
So that which has changed must have been changing and that which is changing must have changed, and a
process of change is preceded by a completion of change and a completion by a process: and we can never
take any stage and say that it is absolutely the first. The reason of this is that no two things without parts can
be contiguous, and therefore in change the process of division is infinite, just as lines may be infinitely
divided so that one part is continually increasing and the other continually decreasing.
So it is evident also that that that which has become must previously have been in process of becoming, and
that which is in process of becoming must previously have become, everything (that is) that is divisible and
continuous: though it is not always the actual thing that is in process of becoming of which this is true:
sometimes it is something else, that is to say, some part of the thing in question, e.g. the foundationstone of
a house. So, too, in the case of that which is perishing and that which has perished: for that which becomes
and that which perishes must contain an element of infiniteness as an immediate consequence of the fact that
they are continuous things: and so a thing cannot be in process of becoming without having become or have
become without having been in process of becoming. So, too, in the case of perishing and having perished:
perishing must be preceded by having perished, and having perished must be preceded by perishing. It is
evident, then, that that which has become must previously have been in process of becoming, and that which
is in process of becoming must previously have become: for all magnitudes and all periods of time are
infinitely divisible.
Consequently no absolutely first stage of change can be represented by any particular part of space or time
which the changing thing may occupy.
7
Now since the motion of everything that is in motion occupies a period of time, and a greater magnitude is
traversed in a longer time, it is impossible that a thing should undergo a finite motion in an infinite time, if
this is understood to mean not that the same motion or a part of it is continually repeated, but that the whole
infinite time is occupied by the whole finite motion. In all cases where a thing is in motion with uniform
velocity it is clear that the finite magnitude is traversed in a finite time. For if we take a part of the motion
which shall be a measure of the whole, the whole motion is completed in as many equal periods of the time as
there are parts of the motion. Consequently, since these parts are finite, both in size individually and in
number collectively, the whole time must also be finite: for it will be a multiple of the portion, equal to the
time occupied in completing the aforesaid part multiplied by the number of the parts.
But it makes no difference even if the velocity is not uniform. For let us suppose that the line AB represents a
finite stretch over which a thing has been moved in the given time, and let GD be the infinite time. Now if
one part of the stretch must have been traversed before another part (this is clear, that in the earlier and in the
later part of the time a different part of the stretch has been traversed: for as the time lengthens a different part
of the motion will always be completed in it, whether the thing in motion changes with uniform velocity or
not: and whether the rate of motion increases or diminishes or remains stationary this is none the less so), let
us then take AE a part of the whole stretch of motion AB which shall be a measure of AB. Now this part of
the motion occupies a certain period of the infinite time: it cannot itself occupy an infinite time, for we are
assuming that that is occupied by the whole AB. And if again I take another part equal to AE, that also must
occupy a finite time in consequence of the same assumption. And if I go on taking parts in this way, on the
one hand there is no part which will be a measure of the infinite time (for the infinite cannot be composed of
finite parts whether equal or unequal, because there must be some unity which will be a measure of things
finite in multitude or in magnitude, which, whether they are equal or unequal, are none the less limited in
PHYSICS
7 74
Page No 78
magnitude); while on the other hand the finite stretch of motion AB is a certain multiple of AE: consequently
the motion AB must be accomplished in a finite time. Moreover it is the same with coming to rest as with
motion. And so it is impossible for one and the same thing to be infinitely in process of becoming or of
perishing. The reasoning he will prove that in a finite time there cannot be an infinite extent of motion or of
coming to rest, whether the motion is regular or irregular. For if we take a part which shall be a measure of
the whole time, in this part a certain fraction, not the whole, of the magnitude will be traversed, because we
assume that the traversing of the whole occupies all the time. Again, in another equal part of the time another
part of the magnitude will be traversed: and similarly in each part of the time that we take, whether equal or
unequal to the part originally taken. It makes no difference whether the parts are equal or not, if only each is
finite: for it is clear that while the time is exhausted by the subtraction of its parts, the infinite magnitude will
not be thus exhausted, since the process of subtraction is finite both in respect of the quantity subtracted and
of the number of times a subtraction is made. Consequently the infinite magnitude will not be traversed in
finite time: and it makes no difference whether the magnitude is infinite in only one direction or in both: for
the same reasoning will hold good.
This having been proved, it is evident that neither can a finite magnitude traverse an infinite magnitude in a
finite time, the reason being the same as that given above: in part of the time it will traverse a finite
magnitude and in each several part likewise, so that in the whole time it will traverse a finite magnitude.
And since a finite magnitude will not traverse an infinite in a finite time, it is clear that neither will an infinite
traverse a finite in a finite time. For if the infinite could traverse the finite, the finite could traverse the
infinite; for it makes no difference which of the two is the thing in motion; either case involves the traversing
of the infinite by the finite. For when the infinite magnitude A is in motion a part of it, say GD, will occupy
the finite and then another, and then another, and so on to infinity. Thus the two results will coincide: the
infinite will have completed a motion over the finite and the finite will have traversed the infinite: for it
would seem to be impossible for the motion of the infinite over the finite to occur in any way other than by
the finite traversing the infinite either by locomotion over it or by measuring it. Therefore, since this is
impossible, the infinite cannot traverse the finite.
Nor again will the infinite traverse the infinite in a finite time. Otherwise it would also traverse the finite, for
the infinite includes the finite. We can further prove this in the same way by taking the time as our
startingpoint.
Since, then, it is established that in a finite time neither will the finite traverse the infinite, nor the infinite the
finite, nor the infinite the infinite, it is evident also that in a finite time there cannot be infinite motion: for
what difference does it make whether we take the motion or the magnitude to be infinite? If either of the two
is infinite, the other must be so likewise: for all locomotion is in space.
8
Since everything to which motion or rest is natural is in motion or at rest in the natural time, place, and
manner, that which is coming to a stand, when it is coming to a stand, must be in motion: for if it is not in
motion it must be at rest: but that which is at rest cannot be coming to rest. From this it evidently follows that
coming to a stand must occupy a period of time: for the motion of that which is in motion occupies a period
of time, and that which is coming to a stand has been shown to be in motion: consequently coming to a stand
must occupy a period of time.
Again, since the terms 'quicker' and 'slower' are used only of that which occupies a period of time, and the
process of coming to a stand may be quicker or slower, the same conclusion follows.
PHYSICS
8 75
Page No 79
And that which is coming to a stand must be coming to a stand in any part of the primary time in which it is
coming to a stand. For if it is coming to a stand in neither of two parts into which the time may be divided, it
cannot be coming to a stand in the whole time, with the result that that that which is coming to a stand will
not be coming to a stand. If on the other hand it is coming to a stand in only one of the two parts of the time,
the whole cannot be the primary time in which it is coming to a stand: for it is coming to a stand in the whole
time not primarily but in virtue of something distinct from itself, the argument being the same as that which
we used above about things in motion.
And just as there is no primary time in which that which is in motion is in motion, so too there is no primary
time in which that which is coming to a stand is coming to a stand, there being no primary stage either of
being in motion or of coming to a stand. For let AB be the primary time in which a thing is coming to a stand.
Now AB cannot be without parts: for there cannot be motion in that which is without parts, because the
moving thing would necessarily have been already moved for part of the time of its movement: and that
which is coming to a stand has been shown to be in motion. But since AB is therefore divisible, the thing is
coming to a stand in every one of the parts of AB: for we have shown above that it is coming to a stand in
every one of the parts in which it is primarily coming to a stand. Since then, that in which primarily a thing is
coming to a stand must be a period of time and not something indivisible, and since all time is infinitely
divisible, there cannot be anything in which primarily it is coming to a stand.
Nor again can there be a primary time at which the being at rest of that which is at rest occurred: for it cannot
have occurred in that which has no parts, because there cannot be motion in that which is indivisible, and that
in which rest takes place is the same as that in which motion takes place: for we defined a state of rest to be
the state of a thing to which motion is natural but which is not in motion when (that is to say in that in which)
motion would be natural to it. Again, our use of the phrase 'being at rest' also implies that the previous state
of a thing is still unaltered, not one point only but two at least being thus needed to determine its presence:
consequently that in which a thing is at rest cannot be without parts. Since, then it is divisible, it must be a
period of time, and the thing must be at rest in every one of its parts, as may be shown by the same method as
that used above in similar demonstrations.
So there can be no primary part of the time: and the reason is that rest and motion are always in a period of
time, and a period of time has no primary part any more than a magnitude or in fact anything continuous: for
everything continuous is divisible into an infinite number of parts.
And since everything that is in motion is in motion in a period of time and changes from something to
something, when its motion is comprised within a particular period of time essentiallythat is to say when it
fills the whole and not merely a part of the time in questionit is impossible that in that time that which is in
motion should be over against some particular thing primarily. For if a thingitself and each of its
partsoccupies the same space for a definite period of time, it is at rest: for it is in just these circumstances
that we use the term 'being at rest'when at one moment after another it can be said with truth that a thing,
itself and its parts, occupies the same space. So if this is being at rest it is impossible for that which is
changing to be as a whole, at the time when it is primarily changing, over against any particular thing (for the
whole period of time is divisible), so that in one part of it after another it will be true to say that the thing,
itself and its parts, occupies the same space. If this is not so and the aforesaid proposition is true only at a
single moment, then the thing will be over against a particular thing not for any period of time but only at a
moment that limits the time. It is true that at any moment it is always over against something stationary: but it
is not at rest: for at a moment it is not possible for anything to be either in motion or at rest. So while it is true
to say that that which is in motion is at a moment not in motion and is opposite some particular thing, it
cannot in a period of time be over against that which is at rest: for that would involve the conclusion that that
which is in locomotion is at rest.
PHYSICS
8 76
Page No 80
9
Zeno's reasoning, however, is fallacious, when he says that if everything when it occupies an equal space is at
rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is
therefore motionless. This is false, for time is not composed of indivisible moments any more than any other
magnitude is composed of indivisibles.
Zeno's arguments about motion, which cause so much disquietude to those who try to solve the problems that
they present, are four in number. The first asserts the nonexistence of motion on the ground that that which
is in locomotion must arrive at the halfway stage before it arrives at the goal. This we have discussed above.
The second is the socalled 'Achilles', and it amounts to this, that in a race the quickest runner can never
overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the
slower must always hold a lead. This argument is the same in principle as that which depends on bisection,
though it differs from it in that the spaces with which we successively have to deal are not divided into
halves. The result of the argument is that the slower is not overtaken: but it proceeds along the same lines as
the bisectionargument (for in both a division of the space in a certain way leads to the result that the goal is
not reached, though the 'Achilles' goes further in that it affirms that even the quickest runner in legendary
tradition must fail in his pursuit of the slowest), so that the solution must be the same. And the axiom that that
which holds a lead is never overtaken is false: it is not overtaken, it is true, while it holds a lead: but it is
overtaken nevertheless if it is granted that it traverses the finite distance prescribed. These then are two of his
arguments.
The third is that already given above, to the effect that the flying arrow is at rest, which result follows from
the assumption that time is composed of moments: if this assumption is not granted, the conclusion will not
follow.
The fourth argument is that concerning the two rows of bodies, each row being composed of an equal number
of bodies of equal size, passing each other on a racecourse as they proceed with equal velocity in opposite
directions, the one row originally occupying the space between the goal and the middle point of the course
and the other that between the middle point and the startingpost. This, he thinks, involves the conclusion
that half a given time is equal to double that time. The fallacy of the reasoning lies in the assumption that a
body occupies an equal time in passing with equal velocity a body that is in motion and a body of equal size
that is at rest; which is false. For instance (so runs the argument), let A, A...be the stationary bodies of equal
size, B, B...the bodies, equal in number and in size to A, A...,originally occupying the half of the course from
the startingpost to the middle of the A's, and G, G...those originally occupying the other half from the goal
to the middle of the A's, equal in number, size, and velocity to B, B....Then three consequences follow:
First, as the B's and the G's pass one another, the first B reaches the last G at the same moment as the first G
reaches the last B. Secondly at this moment the first G has passed all the A's, whereas the first B has passed
only half the A's, and has consequently occupied only half the time occupied by the first G, since each of the
two occupies an equal time in passing each A. Thirdly, at the same moment all the B's have passed all the
G's: for the first G and the first B will simultaneously reach the opposite ends of the course, since (so says
Zeno) the time occupied by the first G in passing each of the B's is equal to that occupied by it in passing
each of the A's, because an equal time is occupied by both the first B and the first G in passing all the A's.
This is the argument, but it presupposed the aforesaid fallacious assumption.
Nor in reference to contradictory change shall we find anything unanswerable in the argument that if a thing
is changing from notwhite, say, to white, and is in neither condition, then it will be neither white nor
notwhite: for the fact that it is not wholly in either condition will not preclude us from calling it white or
PHYSICS
9 77
Page No 81
notwhite. We call a thing white or notwhite not necessarily because it is be one or the other, but cause
most of its parts or the most essential parts of it are so: not being in a certain condition is different from not
being wholly in that condition. So, too, in the case of being and notbeing and all other conditions which
stand in a contradictory relation: while the changing thing must of necessity be in one of the two opposites, it
is never wholly in either.
Again, in the case of circles and spheres and everything whose motion is confined within the space that it
occupies, it is not true to say the motion can be nothing but rest, on the ground that such things in motion,
themselves and their parts, will occupy the same position for a period of time, and that therefore they will be
at once at rest and in motion. For in the first place the parts do not occupy the same position for any period of
time: and in the second place the whole also is always changing to a different position: for if we take the orbit
as described from a point A on a circumference, it will not be the same as the orbit as described from B or G
or any other point on the same circumference except in an accidental sense, the sense that is to say in which a
musical man is the same as a man. Thus one orbit is always changing into another, and the thing will never be
at rest. And it is the same with the sphere and everything else whose motion is confined within the space that
it occupies.
10
Our next point is that that which is without parts cannot be in motion except accidentally: i.e. it can be in
motion only in so far as the body or the magnitude is in motion and the partless is in motion by inclusion
therein, just as that which is in a boat may be in motion in consequence of the locomotion of the boat, or a
part may be in motion in virtue of the motion of the whole. (It must be remembered, however, that by 'that
which is without parts' I mean that which is quantitatively indivisible (and that the case of the motion of a
part is not exactly parallel): for parts have motions belonging essentially and severally to themselves distinct
from the motion of the whole. The distinction may be seen most clearly in the case of a revolving sphere, in
which the velocities of the parts near the centre and of those on the surface are different from one another and
from that of the whole; this implies that there is not one motion but many). As we have said, then, that which
is without parts can be in motion in the sense in which a man sitting in a boat is in motion when the boat is
travelling, but it cannot be in motion of itself. For suppose that it is changing from AB to BGeither from one
magnitude to another, or from one form to another, or from some state to its contradictoryand let D be the
primary time in which it undergoes the change. Then in the time in which it is changing it must be either in
AB or in BG or partly in one and partly in the other: for this, as we saw, is true of everything that is changing.
Now it cannot be partly in each of the two: for then it would be divisible into parts. Nor again can it be in
BG: for then it will have completed the change, whereas the assumption is that the change is in process. It
remains, then, that in the time in which it is changing, it is in AB. That being so, it will be at rest: for, as we
saw, to be in the same condition for a period of time is to be at rest. So it is not possible for that which has no
parts to be in motion or to change in any way: for only one condition could have made it possible for it to
have motion, viz. that time should be composed of moments, in which case at any moment it would have
completed a motion or a change, so that it would never be in motion, but would always have been in motion.
But this we have already shown above to be impossible: time is not composed of moments, just as a line is
not composed of points, and motion is not composed of starts: for this theory simply makes motion consist of
indivisibles in exactly the same way as time is made to consist of moments or a length of points.
Again, it may be shown in the following way that there can be no motion of a point or of any other
indivisible. That which is in motion can never traverse a space greater than itself without first traversing a
space equal to or less than itself. That being so, it is evident that the point also must first traverse a space
equal to or less than itself. But since it is indivisible, there can be no space less than itself for it to traverse
first: so it will have to traverse a distance equal to itself. Thus the line will be composed of points, for the
point, as it continually traverses a distance equal to itself, will be a measure of the whole line. But since this
PHYSICS
10 78
Page No 82
is impossible, it is likewise impossible for the indivisible to be in motion.
Again, since motion is always in a period of time and never in a moment, and all time is divisible, for
everything that is in motion there must be a time less than that in which it traverses a distance as great as
itself. For that in which it is in motion will be a time, because all motion is in a period of time; and all time
has been shown above to be divisible. Therefore, if a point is in motion, there must be a time less than that in
which it has itself traversed any distance. But this is impossible, for in less time it must traverse less distance,
and thus the indivisible will be divisible into something less than itself, just as the time is so divisible: the fact
being that the only condition under which that which is without parts and indivisible could be in motion
would have been the possibility of the infinitely small being in motion in a moment: for in the two
questionsthat of motion in a moment and that of motion of something indivisiblethe same principle is
involved.
Our next point is that no process of change is infinite: for every change, whether between contradictories or
between contraries, is a change from something to something. Thus in contradictory changes the positive or
the negative, as the case may be, is the limit, e.g. being is the limit of coming to be and notbeing is the limit
of ceasing to be: and in contrary changes the particular contraries are the limits, since these are the extreme
points of any such process of change, and consequently of every process of alteration: for alteration is always
dependent upon some contraries. Similarly contraries are the extreme points of processes of increase and
decrease: the limit of increase is to be found in the complete magnitude proper to the peculiar nature of the
thing that is increasing, while the limit of decrease is the complete loss of such magnitude. Locomotion, it is
true, we cannot show to be finite in this way, since it is not always between contraries. But since that which
cannot be cut (in the sense that it is inconceivable that it should be cut, the term 'cannot' being used in several
senses)since it is inconceivable that that which in this sense cannot be cut should be in process of being cut,
and generally that that which cannot come to be should be in process of coming to be, it follows that it is
inconceivable that that which cannot complete a change should be in process of changing to that to which it
cannot complete a change. If, then, it is to be assumed that that which is in locomotion is in process of
changing, it must be capable of completing the change. Consequently its motion is not infinite, and it will not
be in locomotion over an infinite distance, for it cannot traverse such a distance.
It is evident, then, that a process of change cannot be infinite in the sense that it is not defined by limits. But it
remains to be considered whether it is possible in the sense that one and the same process of change may be
infinite in respect of the time which it occupies. If it is not one process, it would seem that there is nothing to
prevent its being infinite in this sense; e.g. if a process of locomotion be succeeded by a process of alteration
and that by a process of increase and that again by a process of coming to be: in this way there may be motion
for ever so far as the time is concerned, but it will not be one motion, because all these motions do not
compose one. If it is to be one process, no motion can be infinite in respect of the time that it occupies, with
the single exception of rotatory locomotion.
Book VII
1
EVERYTHING that is in motion must be moved by something. For if it has not the source of its motion in
itself it is evident that it is moved by something other than itself, for there must be something else that moves
it. If on the other hand it has the source of its motion in itself, let AB be taken to represent that which is in
motion essentially of itself and not in virtue of the fact that something belonging to it is in motion. Now in the
first place to assume that AB, because it is in motion as a whole and is not moved by anything external to
itself, is therefore moved by itselfthis is just as if, supposing that KL is moving LM and is also itself in
motion, we were to deny that KM is moved by anything on the ground that it is not evident which is the part
PHYSICS
Book VII 79
Page No 83
that is moving it and which the part that is moved. In the second place that which is in motion without being
moved by anything does not necessarily cease from its motion because something else is at rest, but a thing
must be moved by something if the fact of something else having ceased from its motion causes it to be at
rest. Thus, if this is accepted, everything that is in motion must be moved by something. For AB, which has
been taken to represent that which is in motion, must be divisible since everything that is in motion is
divisible. Let it be divided, then, at G. Now if GB is not in motion, then AB will not be in motion: for if it is,
it is clear that AG would be in motion while BG is at rest, and thus AB cannot be in motion essentially and
primarily. But ex hypothesi AB is in motion essentially and primarily. Therefore if GB is not in motion AB
will be at rest. But we have agreed that that which is at rest if something else is not in motion must be moved
by something. Consequently, everything that is in motion must be moved by something: for that which is in
motion will always be divisible, and if a part of it is not in motion the whole must be at rest.
Since everything that is in motion must be moved by something, let us take the case in which a thing is in
locomotion and is moved by something that is itself in motion, and that again is moved by something else
that is in motion, and that by something else, and so on continually: then the series cannot go on to infinity,
but there must be some first movent. For let us suppose that this is not so and take the series to be infinite. Let
A then be moved by B, B by G, G by D, and so on, each member of the series being moved by that which
comes next to it. Then since ex hypothesi the movent while causing motion is also itself in motion, and the
motion of the moved and the motion of the movent must proceed simultaneously (for the movent is causing
motion and the moved is being moved simultaneously) it is evident that the respective motions of A, B, G,
and each of the other moved movents are simultaneous. Let us take the motion of each separately and let E be
the motion of A, Z of B, and H and O respectively the motions of G and D: for though they are all moved
severally one by another, yet we may still take the motion of each as numerically one, since every motion is
from something to something and is not infinite in respect of its extreme points. By a motion that is
numerically one I mean a motion that proceeds from something numerically one and the same to something
numerically one and the same in a period of time numerically one and the same: for a motion may be the
same generically, specifically, or numerically: it is generically the same if it belongs to the same category,
e.g. substance or quality: it is specifically the same if it proceeds from something specifically the same to
something specifically the same, e.g. from white to black or from good to bad, which is not of a kind
specifically distinct: it is numerically the same if it proceeds from something numerically one to something
numerically one in the same period of time, e.g. from a particular white to a particular black, or from a
particular place to a particular place, in a particular period of time: for if the period of time were not one and
the same, the motion would no longer be numerically one though it would still be specifically one.
We have dealt with this question above. Now let us further take the time in which A has completed its
motion, and let it be represented by K. Then since the motion of A is finite the time will also be finite. But
since the movents and the things moved are infinite, the motion EZHO, i.e. the motion that is composed of all
the individual motions, must be infinite. For the motions of A, B, and the others may be equal, or the motions
of the others may be greater: but assuming what is conceivable, we find that whether they are equal or some
are greater, in both cases the whole motion is infinite. And since the motion of A and that of each of the
others are simultaneous, the whole motion must occupy the same time as the motion of A: but the time
occupied by the motion of A is finite: consequently the motion will be infinite in a finite time, which is
impossible.
It might be thought that what we set out to prove has thus been shown, but our argument so far does not
prove it, because it does not yet prove that anything impossible results from the contrary supposition: for in a
finite time there may be an infinite motion, though not of one thing, but of many: and in the case that we are
considering this is so: for each thing accomplishes its own motion, and there is no impossibility in many
things being in motion simultaneously. But if (as we see to be universally the case) that which primarily is
moved locally and corporeally must be either in contact with or continuous with that which moves it, the
things moved and the movents must be continuous or in contact with one another, so that together they all
PHYSICS
Book VII 80
Page No 84
form a single unity: whether this unity is finite or infinite makes no difference to our present argument; for in
any case since the things in motion are infinite in number the whole motion will be infinite, if, as is
theoretically possible, each motion is either equal to or greater than that which follows it in the series: for we
shall take as actual that which is theoretically possible. If, then, A, B, G, D form an infinite magnitude that
passes through the motion EZHO in the finite time K, this involves the conclusion that an infinite motion is
passed through in a finite time: and whether the magnitude in question is finite or infinite this is in either case
impossible. Therefore the series must come to an end, and there must be a first movent and a first moved: for
the fact that this impossibility results only from the assumption of a particular case is immaterial, since the
case assumed is theoretically possible, and the assumption of a theoretically possible case ought not to give
rise to any impossible result.
2
That which is the first movement of a thingin the sense that it supplies not 'that for the sake of which' but the
source of the motionis always together with that which is moved by it by 'together' I mean that there is
nothing intermediate between them). This is universally true wherever one thing is moved by another. And
since there are three kinds of motion, local, qualitative, and quantitative, there must also be three kinds of
movent, that which causes locomotion, that which causes alteration, and that which causes increase or
decrease.
Let us begin with locomotion, for this is the primary motion. Everything that is in locomotion is moved either
by itself or by something else. In the case of things that are moved by themselves it is evident that the moved
and the movent are together: for they contain within themselves their first movent, so that there is nothing in
between. The motion of things that are moved by something else must proceed in one of four ways: for there
are four kinds of locomotion caused by something other than that which is in motion, viz. pulling, pushing,
carrying, and twirling. All forms of locomotion are reducible to these. Thus pushing on is a form of pushing
in which that which is causing motion away from itself follows up that which it pushes and continues to push
it: pushing off occurs when the movent does not follow up the thing that it has moved: throwing when the
movent causes a motion away from itself more violent than the natural locomotion of the thing moved, which
continues its course so long as it is controlled by the motion imparted to it. Again, pushing apart and pushing
together are forms respectively of pushing off and pulling: pushing apart is pushing off, which may be a
motion either away from the pusher or away from something else, while pushing together is pulling, which
may be a motion towards something else as well as the puller. We may similarly classify all the varieties of
these last two, e.g. packing and combing: the former is a form of pushing together, the latter a form of
pushing apart. The same is true of the other processes of combination and separation (they will all be found to
be forms of pushing apart or of pushing together), except such as are involved in the processes of becoming
and perishing. (At same time it is evident that there is no other kind of motion but combination and
separation: for they may all be apportioned to one or other of those already mentioned.) Again, inhaling is a
form of pulling, exhaling a form of pushing: and the same is true of spitting and of all other motions that
proceed through the body, whether secretive or assimilative, the assimilative being forms of pulling, the
secretive of pushing off. All other kinds of locomotion must be similarly reduced, for they all fall under one
or other of our four heads. And again, of these four, carrying and twirling are to pulling and pushing. For
carrying always follows one of the other three methods, for that which is carried is in motion accidentally,
because it is in or upon something that is in motion, and that which carries it is in doing so being either pulled
or pushed or twirled; thus carrying belongs to all the other three kinds of motion in common. And twirling is
a compound of pulling and pushing, for that which is twirling a thing must be pulling one part of the thing
and pushing another part, since it impels one part away from itself and another part towards itself. If,
therefore, it can be shown that that which is pushing and that which is pushing and pulling are adjacent
respectively to that which is being pushed and that which is being pulled, it will be evident that in all
locomotion there is nothing intermediate between moved and movent. But the former fact is clear even from
PHYSICS
2 81
Page No 85
the definitions of pushing and pulling, for pushing is motion to something else from oneself or from
something else, and pulling is motion from something else to oneself or to something else, when the motion
of that which is pulling is quicker than the motion that would separate from one another the two things that
are continuous: for it is this that causes one thing to be pulled on along with the other. (It might indeed be
thought that there is a form of pulling that arises in another way: that wood, e.g. pulls fire in a manner
different from that described above. But it makes no difference whether that which pulls is in motion or is
stationary when it is pulling: in the latter case it pulls to the place where it is, while in the former it pulls to
the place where it was.) Now it is impossible to move anything either from oneself to something else or
something else to oneself without being in contact with it: it is evident, therefore, that in all locomotion there
is nothing intermediate between moved and movent.
Nor again is there anything intermediate between that which undergoes and that which causes alteration: this
can be proved by induction: for in every case we find that the respective extremities of that which causes and
that which undergoes alteration are adjacent. For our assumption is that things that are undergoing alteration
are altered in virtue of their being affected in respect of their socalled affective qualities, since that which is
of a certain quality is altered in so far as it is sensible, and the characteristics in which bodies differ from one
another are sensible characteristics: for every body differs from another in possessing a greater or lesser
number of sensible characteristics or in possessing the same sensible characteristics in a greater or lesser
degree. But the alteration of that which undergoes alteration is also caused by the abovementioned
characteristics, which are affections of some particular underlying quality. Thus we say that a thing is altered
by becoming hot or sweet or thick or dry or white: and we make these assertions alike of what is inanimate
and of what is animate, and further, where animate things are in question, we make them both of the parts that
have no power of senseperception and of the senses themselves. For in a way even the senses undergo
alteration, since the active sense is a motion through the body in the course of which the sense is affected in a
certain way. We see, then, that the animate is capable of every kind of alteration of which the inanimate is
capable: but the inanimate is not capable of every kind of alteration of which the animate is capable, since it
is not capable of alteration in respect of the senses: moreover the inanimate is unconscious of being affected
by alteration, whereas the animate is conscious of it, though there is nothing to prevent the animate also being
unconscious of it when the process of the alteration does not concern the senses. Since, then, the alteration of
that which undergoes alteration is caused by sensible things, in every case of such alteration it is evident that
the respective extremities of that which causes and that which undergoes alteration are adjacent. Thus the air
is continuous with that which causes the alteration, and the body that undergoes alteration is continuous with
the air. Again, the colour is continuous with the light and the light with the sight. And the same is true of
hearing and smelling: for the primary movent in respect to the moved is the air. Similarly, in the case of
tasting, the flavour is adjacent to the sense of taste. And it is just the same in the case of things that are
inanimate and incapable of senseperception. Thus there can be nothing intermediate between that which
undergoes and that which causes alteration.
Nor, again, can there be anything intermediate between that which suffers and that which causes increase: for
the part of the latter that starts the increase does so by becoming attached in such a way to the former that the
whole becomes one. Again, the decrease of that which suffers decrease is caused by a part of the thing
becoming detached. So that which causes increase and that which causes decrease must be continuous with
that which suffers increase and that which suffers decrease respectively: and if two things are continuous with
one another there can be nothing intermediate between them.
It is evident, therefore, that between the extremities of the moved and the movent that are respectively first
and last in reference to the moved there is nothing intermediate.
PHYSICS
2 82
Page No 86
3
Everything, we say, that undergoes alteration is altered by sensible causes, and there is alteration only in
things that are said to be essentially affected by sensible things. The truth of this is to be seen from the
following considerations. Of all other things it would be most natural to suppose that there is alteration in
figures and shapes, and in acquired states and in the processes of acquiring and losing these: but as a matter
of fact in neither of these two classes of things is there alteration.
In the first place, when a particular formation of a thing is completed, we do not call it by the name of its
material: e.g. we do not call the statue 'bronze' or the pyramid 'wax' or the bed 'wood', but we use a derived
expression and call them 'of bronze', 'waxen', and 'wooden' respectively. But when a thing has been affected
and altered in any way we still call it by the original name: thus we speak of the bronze or the wax being dry
or fluid or hard or hot.
And not only so: we also speak of the particular fluid or hot substance as being bronze, giving the material
the same name as that which we use to describe the affection.
Since, therefore, having regard to the figure or shape of a thing we no longer call that which has become of a
certain figure by the name of the material that exhibits the figure, whereas having regard to a thing's
affections or alterations we still call it by the name of its material, it is evident that becomings of the former
kind cannot be alterations.
Moreover it would seem absurd even to speak in this way, to speak, that is to say, of a man or house or
anything else that has come into existence as having been altered. Though it may be true that every such
becoming is necessarily the result of something's being altered, the result, e.g. of the material's being
condensed or rarefied or heated or cooled, nevertheless it is not the things that are coming into existence that
are altered, and their becoming is not an alteration.
Again, acquired states, whether of the body or of the soul, are not alterations. For some are excellences and
others are defects, and neither excellence nor defect is an alteration: excellence is a perfection (for when
anything acquires its proper excellence we call it perfect, since it is then if ever that we have a thing in its
natural state: e.g. we have a perfect circle when we have one as good as possible), while defect is a perishing
of or departure from this condition. So as when speaking of a house we do not call its arrival at perfection an
alteration (for it would be absurd to suppose that the coping or the tiling is an alteration or that in receiving its
coping or its tiling a house is altered and not perfected), the same also holds good in the case of excellences
and defects and of the persons or things that possess or acquire them: for excellences are perfections of a
thing's nature and defects are departures from it: consequently they are not alterations.
Further, we say that all excellences depend upon particular relations. Thus bodily excellences such as health
and a good state of body we regard as consisting in a blending of hot and cold elements within the body in
due proportion, in relation either to one another or to the surrounding atmosphere: and in like manner we
regard beauty, strength, and all the other bodily excellences and defects. Each of them exists in virtue of a
particular relation and puts that which possesses it in a good or bad condition with regard to its proper
affections, where by 'proper' affections I mean those influences that from the natural constitution of a thing
tend to promote or destroy its existence. Since then, relatives are neither themselves alterations nor the
subjects of alteration or of becoming or in fact of any change whatever, it is evident that neither states nor the
processes of losing and acquiring states are alterations, though it may be true that their becoming or perishing
is necessarily, like the becoming or perishing of a specific character or form, the result of the alteration of
certain other things, e.g. hot and cold or dry and wet elements or the elements, whatever they may be, on
which the states primarily depend. For each several bodily defect or excellence involves a relation with those
PHYSICS
3 83
Page No 87
things from which the possessor of the defect or excellence is naturally subject to alteration: thus excellence
disposes its possessor to be unaffected by these influences or to be affected by those of them that ought to be
admitted, while defect disposes its possessor to be affected by them or to be unaffected by those of them that
ought to be admitted.
And the case is similar in regard to the states of the soul, all of which (like those of body) exist in virtue of
particular relations, the excellences being perfections of nature and the defects departures from it: moreover,
excellence puts its possessor in good condition, while defect puts its possessor in a bad condition, to meet his
proper affections. Consequently these cannot any more than the bodily states be alterations, nor can the
processes of losing and acquiring them be so, though their becoming is necessarily the result of an alteration
of the sensitive part of the soul, and this is altered by sensible objects: for all moral excellence is concerned
with bodily pleasures and pains, which again depend either upon acting or upon remembering or upon
anticipating. Now those that depend upon action are determined by senseperception, i.e. they are stimulated
by something sensible: and those that depend upon memory or anticipation are likewise to be traced to
senseperception, for in these cases pleasure is felt either in remembering what one has experienced or in
anticipating what one is going to experience. Thus all pleasure of this kind must be produced by sensible
things: and since the presence in any one of moral defect or excellence involves the presence in him of
pleasure or pain (with which moral excellence and defect are always concerned), and these pleasures and
pains are alterations of the sensitive part, it is evident that the loss and acquisition of these states no less than
the loss and acquisition of the states of the body must be the result of the alteration of something else.
Consequently, though their becoming is accompanied by an alteration, they are not themselves alterations.
Again, the states of the intellectual part of the soul are not alterations, nor is there any becoming of them. In
the first place it is much more true of the possession of knowledge that it depends upon a particular relation.
And further, it is evident that there is no becoming of these states. For that which is potentially possessed of
knowledge becomes actually possessed of it not by being set in motion at all itself but by reason of the
presence of something else: i.e. it is when it meets with the particular object that it knows in a manner the
particular through its knowledge of the universal. (Again, there is no becoming of the actual use and activity
of these states, unless it is thought that there is a becoming of vision and touching and that the activity in
question is similar to these.) And the original acquisition of knowledge is not a becoming or an alteration: for
the terms 'knowing' and 'understanding' imply that the intellect has reached a state of rest and come to a
standstill, and there is no becoming that leads to a state of rest, since, as we have said above, change at all can
have a becoming. Moreover, just as to say, when any one has passed from a state of intoxication or sleep or
disease to the contrary state, that he has become possessed of knowledge again is incorrect in spite of the fact
that he was previously incapable of using his knowledge, so, too, when any one originally acquires the state,
it is incorrect to say that he becomes possessed of knowledge: for the possession of understanding and
knowledge is produced by the soul's settling down out of the restlessness natural to it. Hence, too, in learning
and in forming judgements on matters relating to their senseperceptions children are inferior to adults owing
to the great amount of restlessness and motion in their souls. Nature itself causes the soul to settle down and
come to a state of rest for the performance of some of its functions, while for the performance of others other
things do so: but in either case the result is brought about through the alteration of something in the body, as
we see in the case of the use and activity of the intellect arising from a man's becoming sober or being
awakened. It is evident, then, from the preceding argument that alteration and being altered occur in sensible
things and in the sensitive part of the soul, and, except accidentally, in nothing else.
4
A difficulty may be raised as to whether every motion is commensurable with every other or not. Now if they
are all commensurable and if two things to have the same velocity must accomplish an equal motion in an
equal time, then we may have a circumference equal to a straight line, or, of course, the one may be greater or
PHYSICS
4 84
Page No 88
less than the other. Further, if one thing alters and another accomplishes a locomotion in an equal time, we
may have an alteration and a locomotion equal to one another: thus an affection will be equal to a length,
which is impossible. But is it not only when an equal motion is accomplished by two things in an equal time
that the velocities of the two are equal? Now an affection cannot be equal to a length. Therefore there cannot
be an alteration equal to or less than a locomotion: and consequently it is not the case that every motion is
commensurable with every other.
But how will our conclusion work out in the case of the circle and the straight line? It would be absurd to
suppose that the motion of one in a circle and of another in a straight line cannot be similar, but that the one
must inevitably move more quickly or more slowly than the other, just as if the course of one were downhill
and of the other uphill. Moreover it does not as a matter of fact make any difference to the argument to say
that the one motion must inevitably be quicker or slower than the other: for then the circumference can be
greater or less than the straight line; and if so it is possible for the two to be equal. For if in the time A the
quicker (B) passes over the distance B' and the slower (G) passes over the distance G', B' will be greater than
G': for this is what we took 'quicker' to mean: and so quicker motion also implies that one thing traverses an
equal distance in less time than another: consequently there will be a part of A in which B will pass over a
part of the circle equal to G', while G will occupy the whole of A in passing over G'. None the less, if the two
motions are commensurable, we are confronted with the consequence stated above, viz. that there may be a
straight line equal to a circle. But these are not commensurable: and so the corresponding motions are not
commensurable either.
But may we say that things are always commensurable if the same terms are applied to them without
equivocation? e.g. a pen, a wine, and the highest note in a scale are not commensurable: we cannot say
whether any one of them is sharper than any other: and why is this? they are incommensurable because it is
only equivocally that the same term 'sharp' is applied to them: whereas the highest note in a scale is
commensurable with the leadingnote, because the term 'sharp' has the same meaning as applied to both. Can
it be, then, that the term 'quick' has not the same meaning as applied to straight motion and to circular motion
respectively? If so, far less will it have the same meaning as applied to alteration and to locomotion.
Or shall we in the first place deny that things are always commensurable if the same terms are applied to
them without equivocation? For the term 'much' has the same meaning whether applied to water or to air, yet
water and air are not commensurable in respect of it: or, if this illustration is not considered satisfactory,
'double' at any rate would seem to have the same meaning as applied to each (denoting in each case the
proportion of two to one), yet water and air are not commensurable in respect of it. But here again may we
not take up the same position and say that the term 'much' is equivocal? In fact there are some terms of which
even the definitions are equivocal; e.g. if 'much' were defined as 'so much and more','so much' would mean
something different in different cases: 'equal' is similarly equivocal; and 'one' again is perhaps inevitably an
equivocal term; and if 'one' is equivocal, so is 'two'. Otherwise why is it that some things are commensurable
while others are not, if the nature of the attribute in the two cases is really one and the same?
Can it be that the incommensurability of two things in respect of any attribute is due to a difference in that
which is primarily capable of carrying the attribute? Thus horse and dog are so commensurable that we may
say which is the whiter, since that which primarily contains the whiteness is the same in both, viz. the
surface: and similarly they are commensurable in respect of size. But water and speech are not
commensurable in respect of clearness, since that which primarily contains the attribute is different in the two
cases. It would seem, however that we must reject this solution, since clearly we could thus make all
equivocal attributes univocal and say merely that that contains each of them is different in different cases:
thus 'equality', 'sweetness', and 'whiteness' will severally always be the same, though that which contains
them is different in different cases. Moreover, it is not any casual thing that is capable of carrying any
attribute: each single attribute can be carried primarily only by one single thing.
PHYSICS
4 85
Page No 89
Must we then say that, if two things are to be commensurable in respect of any attribute, not only must the
attribute in question be applicable to both without equivocation, but there must also be no specific differences
either in the attribute itself or in that which contains the attributethat these, I mean, must not be divisible in
the way in which colour is divided into kinds? Thus in this respect one thing will not be commensurable with
another, i.e. we cannot say that one is more coloured than the other where only colour in general and not any
particular colour is meant; but they are commensurable in respect of whiteness.
Similarly in the case of motion: two things are of the same velocity if they occupy an equal time in
accomplishing a certain equal amount of motion. Suppose, then, that in a certain time an alteration is
undergone by one half of a body's length and a locomotion is accomplished the other half: can be say that in
this case the alteration is equal to the locomotion and of the same velocity? That would be absurd, and the
reason is that there are different species of motion. And if in consequence of this we must say that two things
are of equal velocity if they accomplish locomotion over an equal distance in an equal time, we have to admit
the equality of a straight line and a circumference. What, then, is the reason of this? Is it that locomotion is a
genus or that line is a genus? (We may leave the time out of account, since that is one and the same.) If the
lines are specifically different, the locomotions also differ specifically from one another: for locomotion is
specifically differentiated according to the specific differentiation of that over which it takes place. (It is also
similarly differentiated, it would seem, accordingly as the instrument of the locomotion is different: thus if
feet are the instrument, it is walking, if wings it is flying; but perhaps we should rather say that this is not so,
and that in this case the differences in the locomotion are merely differences of posture in that which is in
motion.) We may say, therefore, that things are of equal velocity in an equal time they traverse the same
magnitude: and when I call it 'the same' I mean that it contains no specific difference and therefore no
difference in the motion that takes place over it. So we have now to consider how motion is differentiated:
and this discussion serves to show that the genus is not a unity but contains a plurality latent in it and distinct
from it, and that in the case of equivocal terms sometimes the different senses in which they are used are far
removed from one another, while sometimes there is a certain likeness between them, and sometimes again
they are nearly related either generically or analogically, with the result that they seem not to be equivocal
though they really are.
When, then, is there a difference of species? Is an attribute specifically different if the subject is different
while the attribute is the same, or must the attribute itself be different as well? And how are we to define the
limits of a species? What will enable us to decide that particular instances of whiteness or sweetness are the
same or different? Is it enough that it appears different in one subject from what appears in another? Or must
there be no sameness at all? And further, where alteration is in question, how is one alteration to be of equal
velocity with another? One person may be cured quickly and another slowly, and cures may also be
simultaneous: so that, recovery of health being an alteration, we have here alterations of equal velocity, since
each alteration occupies an equal time. But what alteration? We cannot here speak of an 'equal' alteration:
what corresponds in the category of quality to equality in the category of quantity is 'likeness'. However, let
us say that there is equal velocity where the same change is accomplished in an equal time. Are we, then, to
find the commensurability in the subject of the affection or in the affection itself? In the case that we have
just been considering it is the fact that health is one and the same that enables us to arrive at the conclusion
that the one alteration is neither more nor less than the other, but that both are alike. If on the other hand the
affection is different in the two cases, e.g. when the alterations take the form of becoming white and
becoming healthy respectively, here there is no sameness or equality or likeness inasmuch as the difference in
the affections at once makes the alterations specifically different, and there is no unity of alteration any more
than there would be unity of locomotion under like conditions. So we must find out how many species there
are of alteration and of locomotion respectively. Now if the things that are in motionthat is to say, the things
to which the motions belong essentially and not accidentallydiffer specifically, then their respective motions
will also differ specifically: if on the other hand they differ generically or numerically, the motions also will
differ generically or numerically as the case may be. But there still remains the question whether, supposing
that two alterations are of equal velocity, we ought to look for this equality in the sameness (or likeness) of
PHYSICS
4 86
Page No 90
the affections, or in the things altered, to see e.g. whether a certain quantity of each has become white. Or
ought we not rather to look for it in both? That is to say, the alterations are the same or different according as
the affections are the same or different, while they are equal or unequal according as the things altered are
equal or unequal.
And now we must consider the same question in the case of becoming and perishing: how is one becoming of
equal velocity with another? They are of equal velocity if in an equal time there are produced two things that
are the same and specifically inseparable, e.g. two men (not merely generically inseparable as e.g. two
animals). Similarly one is quicker than the other if in an equal time the product is different in the two cases. I
state it thus because we have no pair of terms that will convey this 'difference' in the way in which unlikeness
is conveyed. If we adopt the theory that it is number that constitutes being, we may indeed speak of a 'greater
number' and a 'lesser number' within the same species, but there is no common term that will include both
relations, nor are there terms to express each of them separately in the same way as we indicate a higher
degree or preponderance of an affection by 'more', of a quantity by 'greater.'
5
Now since wherever there is a movent, its motion always acts upon something, is always in something, and
always extends to something (by 'is always in something' I mean that it occupies a time: and by 'extends to
something' I mean that it involves the traversing of a certain amount of distance: for at any moment when a
thing is causing motion, it also has caused motion, so that there must always be a certain amount of distance
that has been traversed and a certain amount of time that has been occupied). then, A the movement have
moved B a distance G in a time D, then in the same time the same force A will move 1/2B twice the distance
G, and in 1/2D it will move 1/2B the whole distance for G: thus the rules of proportion will be observed.
Again if a given force move a given weight a certain distance in a certain time and half the distance in half
the time, half the motive power will move half the weight the same distance in the same time. Let E represent
half the motive power A and Z half the weight B: then the ratio between the motive power and the weight in
the one case is similar and proportionate to the ratio in the other, so that each force will cause the same
distance to be traversed in the same time. But if E move Z a distance G in a time D, it does not necessarily
follow that E can move twice Z half the distance G in the same time. If, then, A move B a distance G in a
time D, it does not follow that E, being half of A, will in the time D or in any fraction of it cause B to traverse
a part of G the ratio between which and the whole of G is proportionate to that between A and E (whatever
fraction of AE may be): in fact it might well be that it will cause no motion at all; for it does not follow that,
if a given motive power causes a certain amount of motion, half that power will cause motion either of any
particular amount or in any length of time: otherwise one man might move a ship, since both the motive
power of the shiphaulers and the distance that they all cause the ship to traverse are divisible into as many
parts as there are men. Hence Zeno's reasoning is false when he argues that there is no part of the millet that
does not make a sound: for there is no reason why any such part should not in any length of time fail to move
the air that the whole bushel moves in falling. In fact it does not of itself move even such a quantity of the air
as it would move if this part were by itself: for no part even exists otherwise than potentially.
If on the other hand we have two forces each of which separately moves one of two weights a given distance
in a given time, then the forces in combination will move the combined weights an equal distance in an equal
time: for in this case the rules of proportion apply.
Then does this hold good of alteration and of increase also? Surely it does, for in any given case we have a
definite thing that cause increase and a definite thing that suffers increase, and the one causes and the other
suffers a certain amount of increase in a certain amount of time. Similarly we have a definite thing that causes
alteration and a definite thing that undergoes alteration, and a certain amount, or rather degree, of alteration is
completed in a certain amount of time: thus in twice as much time twice as much alteration will be completed
PHYSICS
5 87
Page No 91
and conversely twice as much alteration will occupy twice as much time: and the alteration of half of its
object will occupy half as much time and in half as much time half of the object will be altered: or again, in
the same amount of time it will be altered twice as much.
On the other hand if that which causes alteration or increase causes a certain amount of increase or alteration
respectively in a certain amount of time, it does not necessarily follow that half the force will occupy twice
the time in altering or increasing the object, or that in twice the time the alteration or increase will be
completed by it: it may happen that there will be no alteration or increase at all, the case being the same as
with the weight.
Book VIII
1
IT remains to consider the following question. Was there ever a becoming of motion before which it had no
being, and is it perishing again so as to leave nothing in motion? Or are we to say that it never had any
becoming and is not perishing, but always was and always will be? Is it in fact an immortal neverfailing
property of things that are, a sort of life as it were to all naturally constituted things?
Now the existence of motion is asserted by all who have anything to say about nature, because they all
concern themselves with the construction of the world and study the question of becoming and perishing,
which processes could not come about without the existence of motion. But those who say that there is an
infinite number of worlds, some of which are in process of becoming while others are in process of perishing,
assert that there is always motion (for these processes of becoming and perishing of the worlds necessarily
involve motion), whereas those who hold that there is only one world, whether everlasting or not, make
corresponding assumptions in regard to motion. If then it is possible that at any time nothing should be in
motion, this must come about in one of two ways: either in the manner described by Anaxagoras, who says
that all things were together and at rest for an infinite period of time, and that then Mind introduced motion
and separated them; or in the manner described by Empedocles, according to whom the universe is alternately
in motion and at restin motion, when Love is making the one out of many, or Strife is making many out of
one, and at rest in the intermediate periods of timehis account being as follows:
'Since One hath learned to spring from Manifold,
And One disjoined makes manifold arise,
Thus they Become, nor stable is their life:
But since their motion must alternate be,
Thus have they ever Rest upon their round':
for we must suppose that he means by this that they alternate from the one motion to the other. We must
consider, then, how this matter stands, for the discovery of the truth about it is of importance, not only for the
study of nature, but also for the investigation of the First Principle.
Let us take our start from what we have already laid down in our course on Physics. Motion, we say, is the
fulfilment of the movable in so far as it is movable. Each kind of motion, therefore, necessarily involves the
presence of the things that are capable of that motion. In fact, even apart from the definition of motion, every
one would admit that in each kind of motion it is that which is capable of that motion that is in motion: thus it
is that which is capable of alteration that is altered, and that which is capable of local change that is in
locomotion: and so there must be something capable of being burned before there can be a process of being
burned, and something capable of burning before there can be a process of burning. Moreover, these things
also must either have a beginning before which they had no being, or they must be eternal. Now if there was a
PHYSICS
Book VIII 88
Page No 92
becoming of every movable thing, it follows that before the motion in question another change or motion
must have taken place in which that which was capable of being moved or of causing motion had its
becoming. To suppose, on the other hand, that these things were in being throughout all previous time
without there being any motion appears unreasonable on a moment's thought, and still more unreasonable, we
shall find, on further consideration. For if we are to say that, while there are on the one hand things that are
movable, and on the other hand things that are motive, there is a time when there is a first movent and a first
moved, and another time when there is no such thing but only something that is at rest, then this thing that is
at rest must previously have been in process of change: for there must have been some cause of its rest, rest
being the privation of motion. Therefore, before this first change there will be a previous change. For some
things cause motion in only one way, while others can produce either of two contrary motions: thus fire
causes heating but not cooling, whereas it would seem that knowledge may be directed to two contrary ends
while remaining one and the same. Even in the former class, however, there seems to be something similar,
for a cold thing in a sense causes heating by turning away and retiring, just as one possessed of knowledge
voluntarily makes an error when he uses his knowledge in the reverse way. But at any rate all things that are
capable respectively of affecting and being affected, or of causing motion and being moved, are capable of it
not under all conditions, but only when they are in a particular condition and approach one another: so it is on
the approach of one thing to another that the one causes motion and the other is moved, and when they are
present under such conditions as rendered the one motive and the other movable. So if the motion was not
always in process, it is clear that they must have been in a condition not such as to render them capable
respectively of being moved and of causing motion, and one or other of them must have been in process of
change: for in what is relative this is a necessary consequence: e.g. if one thing is double another when before
it was not so, one or other of them, if not both, must have been in process of change. It follows then, that
there will be a process of change previous to the first.
(Further, how can there be any 'before' and 'after' without the existence of time? Or how can there be any time
without the existence of motion? If, then, time is the number of motion or itself a kind of motion, it follows
that, if there is always time, motion must also be eternal. But so far as time is concerned we see that all with
one exception are in agreement in saying that it is uncreated: in fact, it is just this that enables Democritus to
show that all things cannot have had a becoming: for time, he says, is uncreated. Plato alone asserts the
creation of time, saying that it had a becoming together with the universe, the universe according to him
having had a becoming. Now since time cannot exist and is unthinkable apart from the moment, and the
moment a kind of middlepoint, uniting as it does in itself both a beginning and an end, a beginning of future
time and an end of past time, it follows that there must always be time: for the extremity of the last period of
time that we take must be found in some moment, since time contains no point of contact for us except the
moment. Therefore, since the moment is both a beginning and an end, there must always be time on both
sides of it. But if this is true of time, it is evident that it must also be true of motion, time being a kind of
affection of motion.)
The same reasoning will also serve to show the imperishability of motion: just as a becoming of motion
would involve, as we saw, the existence of a process of change previous to the first, in the same way a
perishing of motion would involve the existence of a process of change subsequent to the last: for when a
thing ceases to be moved, it does not therefore at the same time cease to be movablee.g. the cessation of the
process of being burned does not involve the cessation of the capacity of being burned, since a thing may be
capable of being burned without being in process of being burnednor, when a thing ceases to be movent,
does it therefore at the same time cease to a be motive. Again, the destructive agent will have to be destroyed,
after what it destroys has been destroyed, and then that which has the capacity of destroying it will have to be
destroyed afterwards, (so that there will be a process of change subsequent to the last,) for being destroyed
also is a kind of change. If, then, view which we are criticizing involves these impossible consequences, it is
clear that motion is eternal and cannot have existed at one time and not at another: in fact such a view can
hardly be described as anythling else than fantastic.
PHYSICS
Book VIII 89
Page No 93
And much the same may be said of the view that such is the ordinance of nature and that this must be
regarded as a principle, as would seem to be the view of Empedocles when he says that the constitution of the
world is of necessity such that Love and Strife alternately predominate and cause motion, while in the
intermediate period of time there is a state of rest. Probably also those who like like Anaxagoras, assert a
single principle (of motion) would hold this view. But that which is produced or directed by nature can never
be anything disorderly: for nature is everywhere the cause of order. Moreover, there is no ratio in the relation
of the infinite to the infinite, whereas order always means ratio. But if we say that there is first a state of rest
for an infinite time, and then motion is started at some moment, and that the fact that it is this rather than a
previous moment is of no importance, and involves no order, then we can no longer say that it is nature's
work: for if anything is of a certain character naturally, it either is so invariably and is not sometimes of this
and sometimes of another character (e.g. fire, which travels upwards naturally, does not sometimes do so and
sometimes not) or there is a ratio in the variation. It would be better, therefore, to say with Empedocles and
any one else who may have maintained such a theory as his that the universe is alternately at rest and in
motion: for in a system of this kind we have at once a certain order. But even here the holder of the theory
ought not only to assert the fact: he ought to explain the cause of it: i.e. he should not make any mere
assumption or lay down any gratuitous axiom, but should employ either inductive or demonstrative
reasoning. The Love and Strife postulated by Empedocles are not in themselves causes of the fact in question,
nor is it of the essence of either that it should be so, the essential function of the former being to unite, of the
latter to separate. If he is to go on to explain this alternate predominance, he should adduce cases where such
a state of things exists, as he points to the fact that among mankind we have something that unites men,
namely Love, while on the other hand enemies avoid one another: thus from the observed fact that this occurs
in certain cases comes the assumption that it occurs also in the universe. Then, again, some argument is
needed to explain why the predominance of each of the two forces lasts for an equal period of time. But it is a
wrong assumption to suppose universally that we have an adequate first principle in virtue of the fact that
something always is so or always happens so. Thus Democritus reduces the causes that explain nature to the
fact that things happened in the past in the same way as they happen now: but he does not think fit to seek for
a first principle to explain this 'always': so, while his theory is right in so far as it is applied to certain
individual cases, he is wrong in making it of universal application. Thus, a triangle always has its angles
equal to two right angles, but there is nevertheless an ulterior cause of the eternity of this truth, whereas first
principles are eternal and have no ulterior cause. Let this conclude what we have to say in support of our
contention that there never was a time when there was not motion, and never will be a time when there will
not be motion.
2
The arguments that may be advanced against this position are not difficult to dispose of. The chief
considerations that might be thought to indicate that motion may exist though at one time it had not existed at
all are the following:
First, it may be said that no process of change is eternal: for the nature of all change is such that it proceeds
from something to something, so that every process of change must be bounded by the contraries that mark
its course, and no motion can go on to infinity.
Secondly, we see that a thing that neither is in motion nor contains any motion within itself can be set in
motion; e.g. inanimate things that are (whether the whole or some part is in question) not in motion but at
rest, are at some moment set in motion: whereas, if motion cannot have a becoming before which it had no
being, these things ought to be either always or never in motion.
Thirdly, the fact is evident above all in the case of animate beings: for it sometimes happens that there is no
motion in us and we are quite still, and that nevertheless we are then at some moment set in motion, that is to
PHYSICS
2 90
Page No 94
say it sometimes happens that we produce a beginning of motion in ourselves spontaneously without
anything having set us in motion from without. We see nothing like this in the case of inanimate things,
which are always set in motion by something else from without: the animal, on the other hand, we say, moves
itself: therefore, if an animal is ever in a state of absolute rest, we have a motionless thing in which motion
can be produced from the thing itself, and not from without. Now if this can occur in an animal, why should
not the same be true also of the universe as a whole? If it can occur in a small world it could also occur in a
great one: and if it can occur in the world, it could also occur in the infinite; that is, if the infinite could as a
whole possibly be in motion or at rest.
Of these objections, then, the firstmentioned motion to opposites is not always the same and numerically
one a correct statement; in fact, this may be said to be a necessary conclusion, provided that it is possible for
the motion of that which is one and the same to be not always one and the same. (I mean that e.g. we may
question whether the note given by a single string is one and the same, or is different each time the string is
struck, although the string is in the same condition and is moved in the same way.) But still, however this
may be, there is nothing to prevent there being a motion that is the same in virtue of being continuous and
eternal: we shall have something to say later that will make this point clearer.
As regards the second objection, no absurdity is involved in the fact that something not in motion may be set
in motion, that which caused the motion from without being at one time present, and at another absent.
Nevertheless, how this can be so remains matter for inquiry; how it comes about, I mean, that the same
motive force at one time causes a thing to be in motion, and at another does not do so: for the difficulty raised
by our objector really amounts to thiswhy is it that some things are not always at rest, and the rest always in
motion?
The third objection may be thought to present more difficulty than the others, namely, that which alleges that
motion arises in things in which it did not exist before, and adduces in proof the case of animate things: thus
an animal is first at rest and afterwards walks, not having been set in motion apparently by anything from
without. This, however, is false: for we observe that there is always some part of the animal's organism in
motion, and the cause of the motion of this part is not the animal itself, but, it may be, its environment.
Moreover, we say that the animal itself originates not all of its motions but its locomotion. So it may well be
the caseor rather we may perhaps say that it must necessarily be the casethat many motions are produced
in the body by its environment, and some of these set in motion the intellect or the appetite, and this again
then sets the whole animal in motion: this is what happens when animals are asleep: though there is then no
perceptive motion in them, there is some motion that causes them to wake up again. But we will leave this
point also to be elucidated at a later stage in our discussion.
3
Our enquiry will resolve itself at the outset into a consideration of the abovementioned problemwhat can
be the reason why some things in the world at one time are in motion and at another are at rest again? Now
one of three things must be true: either all things are always at rest, or all things are always in motion, or
some things are in motion and others at rest: and in this last case again either the things that are in motion are
always in motion and the things that are at rest are always at rest, or they are all constituted so as to be
capable alike of motion and of rest; or there is yet a third possibility remainingit may be that some things in
the world are always motionless, others always in motion, while others again admit of both conditions. This
last is the account of the matter that we must give: for herein lies the solution of all the difficulties raised and
the conclusion of the investigation upon which we are engaged.
To maintain that all things are at rest, and to disregard senseperception in an attempt to show the theory to
be reasonable, would be an instance of intellectual weakness: it would call in question a whole system, not a
PHYSICS
3 91
Page No 95
particular detail: moreover, it would be an attack not only on the physicist but on almost all sciences and all
received opinions, since motion plays a part in all of them. Further, just as in arguments about mathematics
objections that involve first principles do not affect the mathematicianand the other sciences are in similar
caseso, too, objections involving the point that we have just raised do not affect the physicist: for it is a
fundamental assumption with him that motion is ultimately referable to nature herself.
The assertion that all things are in motion we may fairly regard as equally false, though it is less subversive of
physical science: for though in our course on physics it was laid down that rest no less than motion is
ultimately referable to nature herself, nevertheless motion is the characteristic fact of nature: moreover, the
view is actually held by some that not merely some things but all things in the world are in motion and
always in motion, though we cannot apprehend the fact by senseperception. Although the supporters of this
theory do not state clearly what kind of motion they mean, or whether they mean all kinds, it is no hard
matter to reply to them: thus we may point out that there cannot be a continuous process either of increase or
of decrease: that which comes between the two has to be included. The theory resembles that about the stone
being worn away by the drop of water or split by plants growing out of it: if so much has been extruded or
removed by the drop, it does not follow that half the amount has previously been extruded or removed in half
the time: the case of the hauled ship is exactly comparable: here we have so many drops setting so much in
motion, but a part of them will not set as much in motion in any period of time. The amount removed is, it is
true, divisible into a number of parts, but no one of these was set in motion separately: they were all set in
motion together. It is evident, then, that from the fact that the decrease is divisible into an infinite number of
parts it does not follow that some part must always be passing away: it all passes away at a particular
moment. Similarly, too, in the case of any alteration whatever if that which suffers alteration is infinitely
divisible it does not follow from this that the same is true of the alteration itself, which often occurs all at
once, as in freezing. Again, when any one has fallen ill, there must follow a period of time in which his
restoration to health is in the future: the process of change cannot take place in an instant: yet the change
cannot be a change to anything else but health. The assertion. therefore, that alteration is continuous is an
extravagant calling into question of the obvious: for alteration is a change from one contrary to another.
Moreover, we notice that a stone becomes neither harder nor softer. Again, in the matter of locomotion, it
would be a strange thing if a stone could be falling or resting on the ground without our being able to
perceive the fact. Further, it is a law of nature that earth and all other bodies should remain in their proper
places and be moved from them only by violence: from the fact then that some of them are in their proper
places it follows that in respect of place also all things cannot be in motion. These and other similar
arguments, then, should convince us that it is impossible either that all things are always in motion or that all
things are always at rest.
Nor again can it be that some things are always at rest, others always in motion, and nothing sometimes at
rest and sometimes in motion. This theory must be pronounced impossible on the same grounds as those
previously mentioned: viz. that we see the abovementioned changes occurring in the case of the same
things. We may further point out that the defender of this position is fighting against the obvious, for on this
theory there can be no such thing as increase: nor can there be any such thing as compulsory motion, if it is
impossible that a thing can be at rest before being set in motion unnaturally. This theory, then, does away
with becoming and perishing. Moreover, motion, it would seem, is generally thought to be a sort of becoming
and perishing, for that to which a thing changes comes to be, or occupancy of it comes to be, and that from
which a thing changes ceases to be, or there ceases to be occupancy of it. It is clear, therefore, that there are
cases of occasional motion and occasional rest.
We have now to take the assertion that all things are sometimes at rest and sometimes in motion and to
confront it with the arguments previously advanced. We must take our start as before from the possibilities
that we distinguished just above. Either all things are at rest, or all things are in motion, or some things are at
rest and others in motion. And if some things are at rest and others in motion, then it must be that either all
things are sometimes at rest and sometimes in motion, or some things are always at rest and the remainder
PHYSICS
3 92
Page No 96
always in motion, or some of the things are always at rest and others always in motion while others again are
sometimes at rest and sometimes in motion. Now we have said before that it is impossible that all things
should be at rest: nevertheless we may now repeat that assertion. We may point out that, even if it is really the
case, as certain persons assert, that the existent is infinite and motionless, it certainly does not appear to be so
if we follow senseperception: many things that exist appear to be in motion. Now if there is such a thing as
false opinion or opinion at all, there is also motion; and similarly if there is such a thing as imagination, or if
it is the case that anything seems to be different at different times: for imagination and opinion are thought to
be motions of a kind. But to investigate this question at allto seek a reasoned justification of a belief with
regard to which we are too well off to require reasoned justificationimplies bad judgement of what is better
and what is worse, what commends itself to belief and what does not, what is ultimate and what is not. It is
likewise impossible that all things should be in motion or that some things should be always in motion and
the remainder always at rest. We have sufficient ground for rejecting all these theories in the single fact that
we see some things that are sometimes in motion and sometimes at rest. It is evident, therefore, that it is no
less impossible that some things should be always in motion and the remainder always at rest than that all
things should be at rest or that all things should be in motion continuously. It remains, then, to consider
whether all things are so constituted as to be capable both of being in motion and of being at rest, or whether,
while some things are so constituted, some are always at rest and some are always in motion: for it is this last
view that we have to show to be true.
4
Now of things that cause motion or suffer motion, to some the motion is accidental, to others essential: thus it
is accidental to what merely belongs to or contains as a part a thing that causes motion or suffers motion,
essential to a thing that causes motion or suffers motion not merely by belonging to such a thing or
containing it as a part.
Of things to which the motion is essential some derive their motion from themselves, others from something
else: and in some cases their motion is natural, in others violent and unnatural. Thus in things that derive their
motion from themselves, e.g. all animals, the motion is natural (for when an animal is in motion its motion is
derived from itself): and whenever the source of the motion of a thing is in the thing itself we say that the
motion of that thing is natural. Therefore the animal as a whole moves itself naturally: but the body of the
animal may be in motion unnaturally as well as naturally: it depends upon the kind of motion that it may
chance to be suffering and the kind of element of which it is composed. And the motion of things that derive
their motion from something else is in some cases natural, in other unnatural: e.g. upward motion of earthy
things and downward motion of fire are unnatural. Moreover the parts of animals are often in motion in an
unnatural way, their positions and the character of the motion being abnormal. The fact that a thing that is in
motion derives its motion from something is most evident in things that are in motion unnaturally, because in
such cases it is clear that the motion is derived from something other than the thing itself. Next to things that
are in motion unnaturally those whose motion while natural is derived from themselvese.g. animalsmake
this fact clear: for here the uncertainty is not as to whether the motion is derived from something but as to
how we ought to distinguish in the thing between the movent and the moved. It would seem that in animals,
just as in ships and things not naturally organized, that which causes motion is separate from that which
suffers motion, and that it is only in this sense that the animal as a whole causes its own motion.
The greatest difficulty, however, is presented by the remaining case of those that we last distinguished.
Where things derive their motion from something else we distinguished the cases in which the motion is
unnatural: we are left with those that are to be contrasted with the others by reason of the fact that the motion
is natural. It is in these cases that difficulty would be experienced in deciding whence the motion is derived,
e.g. in the case of light and heavy things. When these things are in motion to positions the reverse of those
they would properly occupy, their motion is violent: when they are in motion to their proper positionsthe
PHYSICS
4 93
Page No 97
light thing up and the heavy thing downtheir motion is natural; but in this latter case it is no longer evident,
as it is when the motion is unnatural, whence their motion is derived. It is impossible to say that their motion
is derived from themselves: this is a characteristic of life and peculiar to living things. Further, if it were, it
would have been in their power to stop themselves (I mean that if e.g. a thing can cause itself to walk it can
also cause itself not to walk), and so, since on this supposition fire itself possesses the power of upward
locomotion, it is clear that it should also possess the power of downward locomotion. Moreover if things
move themselves, it would be unreasonable to suppose that in only one kind of motion is their motion derived
from themselves. Again, how can anything of continuous and naturally connected substance move itself? In
so far as a thing is one and continuous not merely in virtue of contact, it is impassive: it is only in so far as a
thing is divided that one part of it is by nature active and another passive. Therefore none of the things that
we are now considering move themselves (for they are of naturally connected substance), nor does anything
else that is continuous: in each case the movent must be separate from the moved, as we see to be the case
with inanimate things when an animate thing moves them. It is the fact that these things also always derive
their motion from something: what it is would become evident if we were to distinguish the different kinds of
cause.
The abovementioned distinctions can also be made in the case of things that cause motion: some of them are
capable of causing motion unnaturally (e.g. the lever is not naturally capable of moving the weight), others
naturally (e.g. what is actually hot is naturally capable of moving what is potentially hot): and similarly in the
case of all other things of this kind.
In the same way, too, what is potentially of a certain quality or of a certain quantity in a certain place is
naturally movable when it contains the corresponding principle in itself and not accidentally (for the same
thing may be both of a certain quality and of a certain quantity, but the one is an accidental, not an essential
property of the other). So when fire or earth is moved by something the motion is violent when it is unnatural,
and natural when it brings to actuality the proper activities that they potentially possess. But the fact that the
term 'potentially' is used in more than one sense is the reason why it is not evident whence such motions as
the upward motion of fire and the downward motion of earth are derived. One who is learning a science
potentially knows it in a different sense from one who while already possessing the knowledge is not actually
exercising it. Wherever we have something capable of acting and something capable of being
correspondingly acted on, in the event of any such pair being in contact what is potential becomes at times
actual: e.g. the learner becomes from one potential something another potential something: for one who
possesses knowledge of a science but is not actually exercising it knows the science potentially in a sense,
though not in the same sense as he knew it potentially before he learnt it. And when he is in this condition, if
something does not prevent him, he actively exercises his knowledge: otherwise he would be in the
contradictory state of not knowing. In regard to natural bodies also the case is similar. Thus what is cold is
potentially hot: then a change takes place and it is fire, and it burns, unless something prevents and hinders it.
So, too, with heavy and light: light is generated from heavy, e.g. air from water (for water is the first thing
that is potentially light), and air is actually light, and will at once realize its proper activity as such unless
something prevents it. The activity of lightness consists in the light thing being in a certain situation, namely
high up: when it is in the contrary situation, it is being prevented from rising. The case is similar also in
regard to quantity and quality. But, be it noted, this is the question we are trying to answerhow can we
account for the motion of light things and heavy things to their proper situations? The reason for it is that they
have a natural tendency respectively towards a certain position: and this constitutes the essence of lightness
and heaviness, the former being determined by an upward, the latter by a downward, tendency. As we have
said, a thing may be potentially light or heavy in more senses than one. Thus not only when a thing is water is
it in a sense potentially light, but when it has become air it may be still potentially light: for it may be that
through some hindrance it does not occupy an upper position, whereas, if what hinders it is removed, it
realizes its activity and continues to rise higher. The process whereby what is of a certain quality changes to a
condition of active existence is similar: thus the exercise of knowledge follows at once upon the possession of
it unless something prevents it. So, too, what is of a certain quantity extends itself over a certain space unless
PHYSICS
4 94
Page No 98
something prevents it. The thing in a sense is and in a sense is not moved by one who moves what is
obstructing and preventing its motion (e.g. one who pulls away a pillar from under a roof or one who removes
a stone from a wineskin in the water is the accidental cause of motion): and in the same way the real cause of
the motion of a ball rebounding from a wall is not the wall but the thrower. So it is clear that in all these cases
the thing does not move itself, but it contains within itself the source of motionnot of moving something or
of causing motion, but of suffering it.
If then the motion of all things that are in motion is either natural or unnatural and violent, and all things
whose motion is violent and unnatural are moved by something, and something other than themselves, and
again all things whose motion is natural are moved by somethingboth those that are moved by themselves
and those that are not moved by themselves (e.g. light things and heavy things, which are moved either by
that which brought the thing into existence as such and made it light and heavy, or by that which released
what was hindering and preventing it); then all things that are in motion must be moved by something.
5
Now this may come about in either of two ways. Either the movent is not itself responsible for the motion,
which is to be referred to something else which moves the movent, or the movent is itself responsible for the
motion. Further, in the latter case, either the movent immediately precedes the last thing in the series, or there
may be one or more intermediate links: e.g. the stick moves the stone and is moved by the hand, which again
is moved by the man: in the man, however, we have reached a movent that is not so in virtue of being moved
by something else. Now we say that the thing is moved both by the last and by the first movent in the series,
but more strictly by the first, since the first movent moves the last, whereas the last does not move the first,
and the first will move the thing without the last, but the last will not move it without the first: e.g. the stick
will not move anything unless it is itself moved by the man. If then everything that is in motion must be
moved by something, and the movent must either itself be moved by something else or not, and in the former
case there must be some first movent that is not itself moved by anything else, while in the case of the
immediate movent being of this kind there is no need of an intermediate movent that is also moved (for it is
impossible that there should be an infinite series of movents, each of which is itself moved by something else,
since in an infinite series there is no first term)if then everything that is in motion is moved by something,
and the first movent is moved but not by anything else, it much be moved by itself.
This same argument may also be stated in another way as follows. Every movent moves something and
moves it with something, either with itself or with something else: e.g. a man moves a thing either himself or
with a stick, and a thing is knocked down either by the wind itself or by a stone propelled by the wind. But it
is impossible for that with which a thing is moved to move it without being moved by that which imparts
motion by its own agency: on the other hand, if a thing imparts motion by its own agency, it is not necessary
that there should be anything else with which it imparts motion, whereas if there is a different thing with
which it imparts motion, there must be something that imparts motion not with something else but with itself,
or else there will be an infinite series. If, then, anything is a movent while being itself moved, the series must
stop somewhere and not be infinite. Thus, if the stick moves something in virtue of being moved by the hand,
the hand moves the stick: and if something else moves with the hand, the hand also is moved by something
different from itself. So when motion by means of an instrument is at each stage caused by something
different from the instrument, this must always be preceded by something else which imparts motion with
itself. Therefore, if this last movent is in motion and there is nothing else that moves it, it must move itself.
So this reasoning also shows that when a thing is moved, if it is not moved immediately by something that
moves itself, the series brings us at some time or other to a movent of this kind.
And if we consider the matter in yet a third wa Ly we shall get this same result as follows. If everything that
is in motion is moved by something that is in motion, ether this being in motion is an accidental attribute of
PHYSICS
5 95
Page No 99
the movents in question, so that each of them moves something while being itself in motion, but not always
because it is itself in motion, or it is not accidental but an essential attribute. Let us consider the former
alternative. If then it is an accidental attribute, it is not necessary that that is in motion should be in motion:
and if this is so it is clear that there may be a time when nothing that exists is in motion, since the accidental
is not necessary but contingent. Now if we assume the existence of a possibility, any conclusion that we
thereby reach will not be an impossibility though it may be contrary to fact. But the nonexistence of motion is
an impossibility: for we have shown above that there must always be motion.
Moreover, the conclusion to which we have been led is a reasonable one. For there must be three thingsthe
moved, the movent, and the instrument of motion. Now the moved must be in motion, but it need not move
anything else: the instrument of motion must both move something else and be itself in motion (for it changes
together with the moved, with which it is in contact and continuous, as is clear in the case of things that move
other things locally, in which case the two things must up to a certain point be in contact): and the
moventthat is to say, that which causes motion in such a manner that it is not merely the instrument of
motionmust be unmoved. Now we have visual experience of the last term in this series, namely that which
has the capacity of being in motion, but does not contain a motive principle, and also of that which is in
motion but is moved by itself and not by anything else: it is reasonable, therefore, not to say necessary, to
suppose the existence of the third term also, that which causes motion but is itself unmoved. So, too,
Anaxagoras is right when he says that Mind is impassive and unmixed, since he makes it the principle of
motion: for it could cause motion in this sense only by being itself unmoved, and have supreme control only
by being unmixed.
We will now take the second alternative. If the movement is not accidentally but necessarily in motionso
that, if it were not in motion, it would not move anythingthen the movent, in so far as it is in motion, must
be in motion in one of two ways: it is moved either as that is which is moved with the same kind of motion,
or with a different kindeither that which is heating, I mean, is itself in process of becoming hot, that which
is making healthy in process of becoming healthy, and that which is causing locomotion in process of
locomotion, or else that which is making healthy is, let us say, in process of locomotion, and that which is
causing locomotion in process of, say, increase. But it is evident that this is impossible. For if we adopt the
first assumption we have to make it apply within each of the very lowest species into which motion can be
divided: e.g. we must say that if some one is teaching some lesson in geometry, he is also in process of being
taught that same lesson in geometry, and that if he is throwing he is in process of being thrown in just the
same manner. Or if we reject this assumption we must say that one kind of motion is derived from another;
e.g. that that which is causing locomotion is in process of increase, that which is causing this increase is in
process of being altered by something else, and that which is causing this alteration is in process of suffering
some different kind of motion. But the series must stop somewhere, since the kinds of motion are limited; and
if we say that the process is reversible, and that that which is causing alteration is in process of locomotion,
we do no more than if we had said at the outset that that which is causing locomotion is in process of
locomotion, and that one who is teaching is in process of being taught: for it is clear that everything that is
moved is moved by the movent that is further back in the series as well as by that which immediately moves
it: in fact the earlier movent is that which more strictly moves it. But this is of course impossible: for it
involves the consequence that one who is teaching is in process of learning what he is teaching, whereas
teaching necessarily implies possessing knowledge, and learning not possessing it. Still more unreasonable is
the consequence involved that, since everything that is moved is moved by something that is itself moved by
something else, everything that has a capacity for causing motion has as such a corresponding capacity for
being moved: i.e. it will have a capacity for being moved in the sense in which one might say that everything
that has a capacity for making healthy, and exercises that capacity, has as such a capacity for being made
healthy, and that which has a capacity for building has as such a capacity for being built. It will have the
capacity for being thus moved either immediately or through one or more links (as it will if, while everything
that has a capacity for causing motion has as such a capacity for being moved by something else, the motion
that it has the capacity for suffering is not that with which it affects what is next to it, but a motion of a
PHYSICS
5 96
Page No 100
different kind; e.g. that which has a capacity for making healthy might as such have a capacity for learn. the
series, however, could be traced back, as we said before, until at some time or other we arrived at the same
kind of motion). Now the first alternative is impossible, and the second is fantastic: it is absurd that that
which has a capacity for causing alteration should as such necessarily have a capacity, let us say, for increase.
It is not necessary, therefore, that that which is moved should always be moved by something else that is
itself moved by something else: so there will be an end to the series. Consequently the first thing that is in
motion will derive its motion either from something that is at rest or from itself. But if there were any need to
consider which of the two, that which moves itself or that which is moved by something else, is the cause and
principle of motion, every one would decide the former: for that which is itself independently a cause is
always prior as a cause to that which is so only in virtue of being itself dependent upon something else that
makes it so.
We must therefore make a fresh start and consider the question; if a thing moves itself, in what sense and in
what manner does it do so? Now everything that is in motion must be infinitely divisible, for it has been
shown already in our general course on Physics, that everything that is essentially in motion is continuous.
Now it is impossible that that which moves itself should in its entirety move itself: for then, while being
specifically one and indivisible, it would as a Whole both undergo and cause the same locomotion or
alteration: thus it would at the same time be both teaching and being taught (the same thing), or both restoring
to and being restored to the same health. Moreover, we have established the fact that it is the movable that is
moved; and this is potentially, not actually, in motion, but the potential is in process to actuality, and motion
is an incomplete actuality of the movable. The movent on the other hand is already in activity: e.g. it is that
which is hot that produces heat: in fact, that which produces the form is always something that possesses it.
Consequently (if a thing can move itself as a whole), the same thing in respect of the same thing may be at
the same time both hot and not hot. So, too, in every other case where the movent must be described by the
same name in the same sense as the moved. Therefore when a thing moves itself it is one part of it that is the
movent and another part that is moved. But it is not selfmoving in the sense that each of the two parts is
moved by the other part: the following considerations make this evident. In the first place, if each of the two
parts is to move the other, there will be no first movent. If a thing is moved by a series of movents, that which
is earlier in the series is more the cause of its being moved than that which comes next, and will be more truly
the movent: for we found that there are two kinds of movent, that which is itself moved by something else
and that which derives its motion from itself: and that which is further from the thing that is moved is nearer
to the principle of motion than that which is intermediate. In the second place, there is no necessity for the
movent part to be moved by anything but itself: so it can only be accidentally that the other part moves it in
return. I take then the possible case of its not moving it: then there will be a part that is moved and a part that
is an unmoved movent. In the third place, there is no necessity for the movent to be moved in return: on the
contrary the necessity that there should always be motion makes it necessary that there should be some
movent that is either unmoved or moved by itself. In the fourth place we should then have a thing undergoing
the same motion that it is causingthat which is producing heat, therefore, being heated. But as a matter of
fact that which primarily moves itself cannot contain either a single part that moves itself or a number of parts
each of which moves itself. For, if the whole is moved by itself, it must be moved either by some part of itself
or as a whole by itself as a whole. If, then, it is moved in virtue of some part of it being moved by that part
itself, it is this part that will be the primary selfmovent, since, if this part is separated from the whole, the
part will still move itself, but the whole will do so no longer. If on the other hand the whole is moved by itself
as a whole, it must be accidentally that the parts move themselves: and therefore, their selfmotion not being
necessary, we may take the case of their not being moved by themselves. Therefore in the whole of the thing
we may distinguish that which imparts motion without itself being moved and that which is moved: for only
in this way is it possible for a thing to be selfmoved. Further, if the whole moves itself we may distinguish
in it that which imparts the motion and that which is moved: so while we say that AB is moved by itself, we
may also say that it is moved by A. And since that which imparts motion may be either a thing that is moved
by something else or a thing that is unmoved, and that which is moved may be either a thing that imparts
motion to something else or a thing that does not, that which moves itself must be composed of something
PHYSICS
5 97
Page No 101
that is unmoved but imparts motion and also of something that is moved but does not necessarily impart
motion but may or may not do so. Thus let A be something that imparts motion but is unmoved, B something
that is moved by A and moves G, G something that is moved by B but moves nothing (granted that we
eventually arrive at G we may take it that there is only one intermediate term, though there may be more).
Then the whole ABG moves itself. But if I take away G, AB will move itself, A imparting motion and B
being moved, whereas G will not move itself or in fact be moved at all. Nor again will BG move itself apart
from A: for B imparts motion only through being moved by something else, not through being moved by any
part of itself. So only AB moves itself. That which moves itself, therefore, must comprise something that
imparts motion but is unmoved and something that is moved but does not necessarily move anything else:
and each of these two things, or at any rate one of them, must be in contact with the other. If, then, that which
imparts motion is a continuous substancethat which is moved must of course be soit is clear that it is not
through some part of the whole being of such a nature as to be capable of moving itself that the whole moves
itself: it moves itself as a whole, both being moved and imparting motion through containing a part that
imparts motion and a part that is moved. It does not impart motion as a whole nor is it moved as a whole: it is
A alone that imparts motion and B alone that is moved. It is not true, further, that G is moved by A, which is
impossible.
Here a difficulty arises: if something is taken away from A (supposing that that which imparts motion but is
unmoved is a continuous substance), or from B the part that is moved, will the remainder of A continue to
impart motion or the remainder of B continue to be moved? If so, it will not be AB primarily that is moved
by itself, since, when something is taken away from AB, the remainder of AB will still continue to move
itself. Perhaps we may state the case thus: there is nothing to prevent each of the two parts, or at any rate one
of them, that which is moved, being divisible though actually undivided, so that if it is divided it will not
continue in the possession of the same capacity: and so there is nothing to prevent selfmotion residing
primarily in things that are potentially divisible.
From what has been said, then, it is evident that that which primarily imparts motion is unmoved: for,
whether the series is closed at once by that which is in motion but moved by something else deriving its
motion directly from the first unmoved, or whether the motion is derived from what is in motion but moves
itself and stops its own motion, on both suppositions we have the result that in all cases of things being in
motion that which primarily imparts motion is unmoved.
6
Since there must always be motion without intermission, there must necessarily be something, one thing or it
may be a plurality, that first imparts motion, and this first movent must be unmoved. Now the question
whether each of the things that are unmoved but impart motion is eternal is irrelevant to our present
argument: but the following considerations will make it clear that there must necessarily be some such thing,
which, while it has the capacity of moving something else, is itself unmoved and exempt from all change,
which can affect it neither in an unqualified nor in an accidental sense. Let us suppose, if any one likes, that
in the case of certain things it is possible for them at different times to be and not to be, without any process
of becoming and perishing (in fact it would seem to be necessary, if a thing that has not parts at one time is
and at another time is not, that any such thing should without undergoing any process of change at one time
be and at another time not be). And let us further suppose it possible that some principles that are unmoved
but capable of imparting motion at one time are and at another time are not. Even so, this cannot be true of all
such principles, since there must clearly be something that causes things that move themselves at one time to
be and at another not to be. For, since nothing that has not parts can be in motion, that which moves itself
must as a whole have magnitude, though nothing that we have said makes this necessarily true of every
movent. So the fact that some things become and others perish, and that this is so continuously, cannot be
caused by any one of those things that, though they are unmoved, do not always exist: nor again can it be
PHYSICS
6 98
Page No 102
caused by any of those which move certain particular things, while others move other things. The eternity and
continuity of the process cannot be caused either by any one of them singly or by the sum of them, because
this causal relation must be eternal and necessary, whereas the sum of these movents is infinite and they do
not all exist together. It is clear, then, that though there may be countless instances of the perishing of some
principles that are unmoved but impart motion, and though many things that move themselves perish and are
succeeded by others that come into being, and though one thing that is unmoved moves one thing while
another moves another, nevertheless there is something that comprehends them all, and that as something
apart from each one of them, and this it is that is the cause of the fact that some things are and others are not
and of the continuous process of change: and this causes the motion of the other movents, while they are the
causes of the motion of other things. Motion, then, being eternal, the first movent, if there is but one, will be
eternal also: if there are more than one, there will be a plurality of such eternal movents. We ought, however,
to suppose that there is one rather than many, and a finite rather than an infinite number. When the
consequences of either assumption are the same, we should always assume that things are finite rather than
infinite in number, since in things constituted by nature that which is finite and that which is better ought, if
possible, to be present rather than the reverse: and here it is sufficient to assume only one movent, the first of
unmoved things, which being eternal will be the principle of motion to everything else.
The following argument also makes it evident that the first movent must be something that is one and eternal.
We have shown that there must always be motion. That being so, motion must also be continuous, because
what is always is continuous, whereas what is merely in succession is not continuous. But further, if motion
is continuous, it is one: and it is one only if the movent and the moved that constitute it are each of them one,
since in the event of a thing's being moved now by one thing and now by another the whole motion will not
be continuous but successive.
Moreover a conviction that there is a first unmoved something may be reached not only from the foregoing
arguments, but also by considering again the principles operative in movents. Now it is evident that among
existing things there are some that are sometimes in motion and sometimes at rest. This fact has served above
to make it clear that it is not true either that all things are in motion or that all things are at rest or that some
things are always at rest and the remainder always in motion: on this matter proof is supplied by things that
fluctuate between the two and have the capacity of being sometimes in motion and sometimes at rest. The
existence of things of this kind is clear to all: but we wish to explain also the nature of each of the other two
kinds and show that there are some things that are always unmoved and some things that are always in
motion. In the course of our argument directed to this end we established the fact that everything that is in
motion is moved by something, and that the movent is either unmoved or in motion, and that, if it is in
motion, it is moved either by itself or by something else and so on throughout the series: and so we proceeded
to the position that the first principle that directly causes things that are in motion to be moved is that which
moves itself, and the first principle of the whole series is the unmoved. Further it is evident from actual
observation that there are things that have the characteristic of moving themselves, e.g. the animal kingdom
and the whole class of living things. This being so, then, the view was suggested that perhaps it may be
possible for motion to come to be in a thing without having been in existence at all before, because we see
this actually occurring in animals: they are unmoved at one time and then again they are in motion, as it
seems. We must grasp the fact, therefore, that animals move themselves only with one kind of motion, and
that this is not strictly originated by them. The cause of it is not derived from the animal itself: it is connected
with other natural motions in animals, which they do not experience through their own instrumentality, e.g.
increase, decrease, and respiration: these are experienced by every animal while it is at rest and not in motion
in respect of the motion set up by its own agency: here the motion is caused by the atmosphere and by many
things that enter into the animal: thus in some cases the cause is nourishment: when it is being digested
animals sleep, and when it is being distributed through the system they awake and move themselves, the first
principle of this motion being thus originally derived from outside. Therefore animals are not always in
continuous motion by their own agency: it is something else that moves them, itself being in motion and
changing as it comes into relation with each several thing that moves itself. (Moreover in all these
PHYSICS
6 99
Page No 103
selfmoving things the first movent and cause of their selfmotion is itself moved by itself, though in an
accidental sense: that is to say, the body changes its place, so that that which is in the body changes its place
also and is a selfmovent through its exercise of leverage.) Hence we may confidently conclude that if a
thing belongs to the class of unmoved movents that are also themselves moved accidentally, it is impossible
that it should cause continuous motion. So the necessity that there should be motion continuously requires
that there should be a first movent that is unmoved even accidentally, if, as we have said, there is to be in the
world of things an unceasing and undying motion, and the world is to remain permanently selfcontained and
within the same limits: for if the first principle is permanent, the universe must also be permanent, since it is
continuous with the first principle. (We must distinguish, however, between accidental motion of a thing by
itself and such motion by something else, the former being confined to perishable things, whereas the latter
belongs also to certain first principles of heavenly bodies, of all those, that is to say, that experience more
than one locomotion.)
And further, if there is always something of this nature, a movent that is itself unmoved and eternal, then that
which is first moved by it must be eternal. Indeed this is clear also from the consideration that there would
otherwise be no becoming and perishing and no change of any kind in other things, which require something
that is in motion to move them: for the motion imparted by the unmoved will always be imparted in the same
way and be one and the same, since the unmoved does not itself change in relation to that which is moved by
it. But that which is moved by something that, though it is in motion, is moved directly by the unmoved
stands in varying relations to the things that it moves, so that the motion that it causes will not be always the
same: by reason of the fact that it occupies contrary positions or assumes contrary forms at different times it
will produce contrary motions in each several thing that it moves and will cause it to be at one time at rest
and at another time in motion.
The foregoing argument, then, has served to clear up the point about which we raised a difficulty at the
outsetwhy is it that instead of all things being either in motion or at rest, or some things being always in
motion and the remainder always at rest, there are things that are sometimes in motion and sometimes not?
The cause of this is now plain: it is because, while some things are moved by an eternal unmoved movent and
are therefore always in motion, other things are moved by a movent that is in motion and changing, so that
they too must change. But the unmoved movent, as has been said, since it remains permanently simple and
unvarying and in the same state, will cause motion that is one and simple.
7
This matter will be made clearer, however, if we start afresh from another point. We must consider whether it
is or is not possible that there should be a continuous motion, and, if it is possible, which this motion is, and
which is the primary motion: for it is plain that if there must always be motion, and a particular motion is
primary and continuous, then it is this motion that is imparted by the first movent, and so it is necessarily one
and the same and continuous and primary.
Now of the three kinds of motion that there aremotion in respect of magnitude, motion in respect of
affection, and motion in respect of placeit is this last, which we call locomotion, that must be primary. This
may be shown as follows. It is impossible that there should be increase without the previous occurrence of
alteration: for that which is increased, although in a sense it is increased by what is like itself, is in a sense
increased by what is unlike itself: thus it is said that contrary is nourishment to contrary: but growth is
effected only by things becoming like to like. There must be alteration, then, in that there is this change from
contrary to contrary. But the fact that a thing is altered requires that there should be something that alters it,
something e.g. that makes the potentially hot into the actually hot: so it is plain that the movent does not
maintain a uniform relation to it but is at one time nearer to and at another farther from that which is altered:
and we cannot have this without locomotion. If, therefore, there must always be motion, there must also
PHYSICS
7 100
Page No 104
always be locomotion as the primary motion, and, if there is a primary as distinguished from a secondary
form of locomotion, it must be the primary form. Again, all affections have their origin in condensation and
rarefaction: thus heavy and light, soft and hard, hot and cold, are considered to be forms of density and rarity.
But condensation and rarefaction are nothing more than combination and separation, processes in accordance
with which substances are said to become and perish: and in being combined and separated things must
change in respect of place. And further, when a thing is increased or decreased its magnitude changes in
respect of place.
Again, there is another point of view from which it will be clearly seen that locomotion is primary. As in the
case of other things so too in the case of motion the word 'primary' may be used in several senses. A thing is
said to be prior to other things when, if it does not exist, the others will not exist, whereas it can exist without
the others: and there is also priority in time and priority in perfection of existence. Let us begin, then, with the
first sense. Now there must be motion continuously, and there may be continuously either continuous motion
or successive motion, the former, however, in a higher degree than the latter: moreover it is better that it
should be continuous rather than successive motion, and we always assume the presence in nature of the
better, if it be possible: since, then, continuous motion is possible (this will be proved later: for the present let
us take it for granted), and no other motion can be continuous except locomotion, locomotion must be
primary. For there is no necessity for the subject of locomotion to be the subject either of increase or of
alteration, nor need it become or perish: on the other hand there cannot be any one of these processes without
the existence of the continuous motion imparted by the first movent.
Secondly, locomotion must be primary in time: for this is the only motion possible for things. It is true indeed
that, in the case of any individual thing that has a becoming, locomotion must be the last of its motions: for
after its becoming it first experiences alteration and increase, and locomotion is a motion that belongs to such
things only when they are perfected. But there must previously be something else that is in process of
locomotion to be the cause even of the becoming of things that become, without itself being in process of
becoming, as e.g. the begotten is preceded by what begot it: otherwise becoming might be thought to be the
primary motion on the ground that the thing must first become. But though this is so in the case of any
individual thing that becomes, nevertheless before anything becomes, something else must be in motion, not
itself becoming but being, and before this there must again be something else. And since becoming cannot be
primaryfor, if it were, everything that is in motion would be perishableit is plain that no one of the motions
next in order can be prior to locomotion. By the motions next in order I mean increase and then alteration,
decrease, and perishing. All these are posterior to becoming: consequently, if not even becoming is prior to
locomotion, then no one of the other processes of change is so either.
Thirdly, that which is in process of becoming appears universally as something imperfect and proceeding to a
first principle: and so what is posterior in the order of becoming is prior in the order of nature. Now all things
that go through the process of becoming acquire locomotion last. It is this that accounts for the fact that some
living things, e.g. plants and many kinds of animals, owing to lack of the requisite organ, are entirely without
motion, whereas others acquire it in the course of their being perfected. Therefore, if the degree in which
things possess locomotion corresponds to the degree in which they have realized their natural development,
then this motion must be prior to all others in respect of perfection of existence: and not only for this reason
but also because a thing that is in motion loses its essential character less in the process of locomotion than in
any other kind of motion: it is the only motion that does not involve a change of being in the sense in which
there is a change in quality when a thing is altered and a change in quantity when a thing is increased or
decreased. Above all it is plain that this motion, motion in respect of place, is what is in the strictest sense
produced by that which moves itself; but it is the selfmovent that we declare to be the first principle of
things that are moved and impart motion and the primary source to which things that are in motion are to be
referred.
PHYSICS
7 101
Page No 105
It is clear, then, from the foregoing arguments that locomotion is the primary motion. We have now to show
which kind of locomotion is primary. The same process of reasoning will also make clear at the same time
the truth of the assumption we have made both now and at a previous stage that it is possible that there should
be a motion that is continuous and eternal. Now it is clear from the following considerations that no other
than locomotion can be continuous. Every other motion and change is from an opposite to an opposite: thus
for the processes of becoming and perishing the limits are the existent and the nonexistent, for alteration the
various pairs of contrary affections, and for increase and decrease either greatness and smallness or perfection
and imperfection of magnitude: and changes to the respective contraries are contrary changes. Now a thing
that is undergoing any particular kind of motion, but though previously existent has not always undergone it,
must previously have been at rest so far as that motion is concerned. It is clear, then, that for the changing
thing the contraries will be states of rest. And we have a similar result in the case of changes that are not
motions: for becoming and perishing, whether regarded simply as such without qualification or as affecting
something in particular, are opposites: therefore provided it is impossible for a thing to undergo opposite
changes at the same time, the change will not be continuous, but a period of time will intervene between the
opposite processes. The question whether these contradictory changes are contraries or not makes no
difference, provided only it is impossible for them both to be present to the same thing at the same time: the
point is of no importance to the argument. Nor does it matter if the thing need not rest in the contradictory
state, or if there is no state of rest as a contrary to the process of change: it may be true that the nonexistent
is not at rest, and that perishing is a process to the nonexistent. All that matters is the intervention of a time:
it is this that prevents the change from being continuous: so, too, in our previous instances the important thing
was not the relation of contrariety but the impossibility of the two processes being present to a thing at the
same time. And there is no need to be disturbed by the fact that on this showing there may be more than one
contrary to the same thing, that a particular motion will be contrary both to rest and to motion in the contrary
direction. We have only to grasp the fact that a particular motion is in a sense the opposite both of a state of
rest and of the contrary motion, in the same way as that which is of equal or standard measure is the opposite
both of that which surpasses it and of that which it surpasses, and that it is impossible for the opposite
motions or changes to be present to a thing at the same time. Furthermore, in the case of becoming and
perishing it would seem to be an utterly absurd thing if as soon as anything has become it must necessarily
perish and cannot continue to exist for any time: and, if this is true of becoming and perishing, we have fair
grounds for inferring the same to be true of the other kinds of change, since it would be in the natural order of
things that they should be uniform in this respect.
8
Let us now proceed to maintain that it is possible that there should be an infinite motion that is single and
continuous, and that this motion is rotatory motion. The motion of everything that is in process of locomotion
is either rotatory or rectilinear or a compound of the two: consequently, if one of the former two is not
continuous, that which is composed of them both cannot be continuous either. Now it is plain that if the
locomotion of a thing is rectilinear and finite it is not continuous locomotion: for the thing must turn back,
and that which turns back in a straight line undergoes two contrary locomotions, since, so far as motion in
respect of place is concerned, upward motion is the contrary of downward motion, forward motion of
backward motion, and motion to the left of motion to the right, these being the pairs of contraries in the
sphere of place. But we have already defined single and continuous motion to be motion of a single thing in a
single period of time and operating within a sphere admitting of no further specific differentiation (for we
have three things to consider, first that which is in motion, e.g. a man or a god, secondly the 'when' of the
motion, that is to say, the time, and thirdly the sphere within which it operates, which may be either place or
affection or essential form or magnitude): and contraries are specifically not one and the same but distinct:
and within the sphere of place we have the abovementioned distinctions. Moreover we have an indication
that motion from A to B is the contrary of motion from B to A in the fact that, if they occur at the same time,
they arrest and stop each other. And the same is true in the case of a circle: the motion from A towards B is
PHYSICS
8 102
Page No 106
the contrary of the motion from A towards G: for even if they are continuous and there is no turning back
they arrest each other, because contraries annihilate or obstruct one another. On the other hand lateral motion
is not the contrary of upward motion. But what shows most clearly that rectilinear motion cannot be
continuous is the fact that turning back necessarily implies coming to a stand, not only when it is a straight
line that is traversed, but also in the case of locomotion in a circle (which is not the same thing as rotatory
locomotion: for, when a thing merely traverses a circle, it may either proceed on its course without a break or
turn back again when it has reached the same point from which it started). We may assure ourselves of the
necessity of this coming to a stand not only on the strength of observation, but also on theoretical grounds.
We may start as follows: we have three points, startingpoint, middlepoint, and finishingpoint, of which
the middlepoint in virtue of the relations in which it stands severally to the other two is both a startingpoint
and a finishingpoint, and though numerically one is theoretically two. We have further the distinction
between the potential and the actual. So in the straight line in question any one of the points lying between
the two extremes is potentially a middlepoint: but it is not actually so unless that which is in motion divides
the line by coming to a stand at that point and beginning its motion again: thus the middlepoint becomes
both a startingpoint and a goal, the startingpoint of the latter part and the finishingpoint of the first part of
the motion. This is the case e.g. when A in the course of its locomotion comes to a stand at B and starts again
towards G: but when its motion is continuous A cannot either have come to be or have ceased to be at the
point B: it can only have been there at the moment of passing, its passage not being contained within any
period of time except the whole of which the particular moment is a dividingpoint. To maintain that it has
come to be and ceased to be there will involve the consequence that A in the course of its locomotion will
always be coming to a stand: for it is impossible that A should simultaneously have come to be at B and
ceased to be there, so that the two things must have happened at different points of time, and therefore there
will be the intervening period of time: consequently A will be in a state of rest at B, and similarly at all other
points, since the same reasoning holds good in every case. When to A, that which is in process of locomotion,
B, the middlepoint, serves both as a finishingpoint and as a startingpoint for its motion, A must come to a
stand at B, because it makes it two just as one might do in thought. However, the point A is the real
startingpoint at which the moving body has ceased to be, and it is at G that it has really come to be when its
course is finished and it comes to a stand. So this is how we must meet the difficulty that then arises, which is
as follows. Suppose the line E is equal to the line Z, that A proceeds in continuous locomotion from the
extreme point of E to G, and that, at the moment when A is at the point B, D is proceeding in uniform
locomotion and with the same velocity as A from the extremity of Z to H: then, says the argument, D will
have reached H before A has reached G for that which makes an earlier start and departure must make an
earlier arrival: the reason, then, for the late arrival of A is that it has not simultaneously come to be and
ceased to be at B: otherwise it will not arrive later: for this to happen it will be necessary that it should come
to a stand there. Therefore we must not hold that there was a moment when A came to be at B and that at the
same moment D was in motion from the extremity of Z: for the fact of A's having come to be at B will
involve the fact of its also ceasing to be there, and the two events will not be simultaneous, whereas the truth
is that A is at B at a sectional point of time and does not occupy time there. In this case, therefore, where the
motion of a thing is continuous, it is impossible to use this form of expression. On the other hand in the case
of a thing that turns back in its course we must do so. For suppose H in the course of its locomotion proceeds
to D and then turns back and proceeds downwards again: then the extreme point D has served as
finishingpoint and as startingpoint for it, one point thus serving as two: therefore H must have come to a
stand there: it cannot have come to be at D and departed from D simultaneously, for in that case it would
simultaneously be there and not be there at the same moment. And here we cannot apply the argument used
to solve the difficulty stated above: we cannot argue that H is at D at a sectional point of time and has not
come to be or ceased to be there. For here the goal that is reached is necessarily one that is actually, not
potentially, existent. Now the point in the middle is potential: but this one is actual, and regarded from below
it is a finishingpoint, while regarded from above it is a startingpoint, so that it stands in these same two
respective relations to the two motions. Therefore that which turns back in traversing a rectilinear course
must in so doing come to a stand. Consequently there cannot be a continuous rectilinear motion that is
eternal.
PHYSICS
8 103
Page No 107
The same method should also be adopted in replying to those who ask, in the terms of Zeno's argument,
whether we admit that before any distance can be traversed half the distance must be traversed, that these
halfdistances are infinite in number, and that it is impossible to traverse distances infinite in numberor
some on the lines of this same argument put the questions in another form, and would have us grant that in
the time during which a motion is in progress it should be possible to reckon a halfmotion before the whole
for every halfdistance that we get, so that we have the result that when the whole distance is traversed we
have reckoned an infinite number, which is admittedly impossible. Now when we first discussed the question
of motion we put forward a solution of this difficulty turning on the fact that the period of time occupied in
traversing the distance contains within itself an infinite number of units: there is no absurdity, we said, in
supposing the traversing of infinite distances in infinite time, and the element of infinity is present in the time
no less than in the distance. But, although this solution is adequate as a reply to the questioner (the question
asked being whether it is possible in a finite time to traverse or reckon an infinite number of units),
nevertheless as an account of the fact and explanation of its true nature it is inadequate. For suppose the
distance to be left out of account and the question asked to be no longer whether it is possible in a finite time
to traverse an infinite number of distances, and suppose that the inquiry is made to refer to the time taken by
itself (for the time contains an infinite number of divisions): then this solution will no longer be adequate, and
we must apply the truth that we enunciated in our recent discussion, stating it in the following way. In the act
of dividing the continuous distance into two halves one point is treated as two, since we make it a
startingpoint and a finishingpoint: and this same result is also produced by the act of reckoning halves as
well as by the act of dividing into halves. But if divisions are made in this way, neither the distance nor the
motion will be continuous: for motion if it is to be continuous must relate to what is continuous: and though
what is continuous contains an infinite number of halves, they are not actual but potential halves. If the halves
are made actual, we shall get not a continuous but an intermittent motion. In the case of reckoning the halves,
it is clear that this result follows: for then one point must be reckoned as two: it will be the finishingpoint of
the one half and the startingpoint of the other, if we reckon not the one continuous whole but the two halves.
Therefore to the question whether it is possible to pass through an infinite number of units either of time or of
distance we must reply that in a sense it is and in a sense it is not. If the units are actual, it is not possible: if
they are potential, it is possible. For in the course of a continuous motion the traveller has traversed an
infinite number of units in an accidental sense but not in an unqualified sense: for though it is an accidental
characteristic of the distance to be an infinite number of halfdistances, this is not its real and essential
character. It is also plain that unless we hold that the point of time that divides earlier from later always
belongs only to the later so far as the thing is concerned, we shall be involved in the consequence that the
same thing is at the same moment existent and not existent, and that a thing is not existent at the moment
when it has become. It is true that the point is common to both times, the earlier as well as the later, and that,
while numerically one and the same, it is theoretically not so, being the finishingpoint of the one and the
startingpoint of the other: but so far as the thing is concerned it belongs to the later stage of what happens to
it. Let us suppose a time ABG and a thing D, D being white in the time A and notwhite in the time B. Then
D is at the moment G white and notwhite: for if we were right in saying that it is white during the whole
time A, it is true to call it white at any moment of A, and notwhite in B, and G is in both A and B. We must
not allow, therefore, that it is white in the whole of A, but must say that it is so in all of it except the last
moment G. G belongs already to the later period, and if in the whole of A notwhite was in process of
becoming and white of perishing, at G the process is complete. And so G is the first moment at which it is
true to call the thing white or not white respectively. Otherwise a thing may be nonexistent at the moment
when it has become and existent at the moment when it has perished: or else it must be possible for a thing at
the same time to be white and not white and in fact to be existent and nonexistent. Further, if anything that
exists after having been previously nonexistent must become existent and does not exist when it is
becoming, time cannot be divisible into timeatoms. For suppose that D was becoming white in the time A
and that at another time B, a timeatom consecutive with the last atom of A, D has already become white and
so is white at that moment: then, inasmuch as in the time A it was becoming white and so was not white and
at the moment B it is white, there must have been a becoming between A and B and therefore also a time in
which the becoming took place. On the other hand, those who deny atoms of time (as we do) are not affected
PHYSICS
8 104
Page No 108
by this argument: according to them D has become and so is white at the last point of the actual time in which
it was becoming white: and this point has no other point consecutive with or in succession to it, whereas
timeatoms are conceived as successive. Moreover it is clear that if D was becoming white in the whole time
A, the time occupied by it in having become white in addition to having been in process of becoming white is
no more than all that it occupied in the mere process of becoming white.
These and suchlike, then, are the arguments for our conclusion that derive cogency from the fact that they
have a special bearing on the point at issue. If we look at the question from the point of view of general
theory, the same result would also appear to be indicated by the following arguments. Everything whose
motion is continuous must, on arriving at any point in the course of its locomotion, have been previously also
in process of locomotion to that point, if it is not forced out of its path by anything: e.g. on arriving at B a
thing must also have been in process of locomotion to B, and that not merely when it was near to B, but from
the moment of its starting on its course, since there can be, no reason for its being so at any particular stage
rather than at an earlier one. So, too, in the case of the other kinds of motion. Now we are to suppose that a
thing proceeds in locomotion from A to G and that at the moment of its arrival at G the continuity of its
motion is unbroken and will remain so until it has arrived back at A. Then when it is undergoing locomotion
from A to G it is at the same time undergoing also its locomotion to A from G: consequently it is
simultaneously undergoing two contrary motions, since the two motions that follow the same straight line are
contrary to each other. With this consequence there also follows another: we have a thing that is in process of
change from a position in which it has not yet been: so, inasmuch as this is impossible, the thing must come
to a stand at G. Therefore the motion is not a single motion, since motion that is interrupted by stationariness
is not single.
Further, the following argument will serve better to make this point clear universally in respect of every kind
of motion. If the motion undergone by that which is in motion is always one of those already enumerated, and
the state of rest that it undergoes is one of those that are the opposites of the motions (for we found that there
could be no other besides these), and moreover that which is undergoing but does not always undergo a
particular motion (by this I mean one of the various specifically distinct motions, not some particular part of
the whole motion) must have been previously undergoing the state of rest that is the opposite of the motion,
the state of rest being privation of motion; then, inasmuch as the two motions that follow the same straight
line are contrary motions, and it is impossible for a thing to undergo simultaneously two contrary motions,
that which is undergoing locomotion from A to G cannot also simultaneously be undergoing locomotion from
G to A: and since the latter locomotion is not simultaneous with the former but is still to be undergone, before
it is undergone there must occur a state of rest at G: for this, as we found, is the state of rest that is the
opposite of the motion from G. The foregoing argument, then, makes it plain that the motion in question is
not continuous.
Our next argument has a more special bearing than the foregoing on the point at issue. We will suppose that
there has occurred in something simultaneously a perishing of notwhite and a becoming of white. Then if
the alteration to white and from white is a continuous process and the white does not remain any time, there
must have occurred simultaneously a perishing of notwhite, a becoming of white, and a becoming of
notwhite: for the time of the three will be the same.
Again, from the continuity of the time in which the motion takes place we cannot infer continuity in the
motion, but only successiveness: in fact, how could contraries, e.g. whiteness and blackness, meet in the same
extreme point?
On the other hand, in motion on a circular line we shall find singleness and continuity: for here we are met by
no impossible consequence: that which is in motion from A will in virtue of the same direction of energy be
simultaneously in motion to A (since it is in motion to the point at which it will finally arrive), and yet will
not be undergoing two contrary or opposite motions: for a motion to a point and a motion from that point are
PHYSICS
8 105
Page No 109
not always contraries or opposites: they are contraries only if they are on the same straight line (for then they
are contrary to one another in respect of place, as e.g. the two motions along the diameter of the circle, since
the ends of this are at the greatest possible distance from one another), and they are opposites only if they are
along the same line. Therefore in the case we are now considering there is nothing to prevent the motion
being continuous and free from all intermission: for rotatory motion is motion of a thing from its place to its
place, whereas rectilinear motion is motion from its place to another place.
Moreover the progress of rotatory motion is never localized within certain fixed limits, whereas that of
rectilinear motion repeatedly is so. Now a motion that is always shifting its ground from moment to moment
can be continuous: but a motion that is repeatedly localized within certain fixed limits cannot be so, since
then the same thing would have to undergo simultaneously two opposite motions. So, too, there cannot be
continuous motion in a semicircle or in any other arc of a circle, since here also the same ground must be
traversed repeatedly and two contrary processes of change must occur. The reason is that in these motions the
startingpoint and the termination do not coincide, whereas in motion over a circle they do coincide, and so
this is the only perfect motion.
This differentiation also provides another means of showing that the other kinds of motion cannot be
continuous either: for in all of them we find that there is the same ground to be traversed repeatedly; thus in
alteration there are the intermediate stages of the process, and in quantitative change there are the intervening
degrees of magnitude: and in becoming and perishing the same thing is true. It makes no difference whether
we take the intermediate stages of the process to be few or many, or whether we add or subtract one: for in
either case we find that there is still the same ground to be traversed repeatedly. Moreover it is plain from
what has been said that those physicists who assert that all sensible things are always in motion are wrong:
for their motion must be one or other of the motions just mentioned: in fact they mostly conceive it as
alteration (things are always in flux and decay, they say), and they go so far as to speak even of becoming and
perishing as a process of alteration. On the other hand, our argument has enabled us to assert the fact,
applying universally to all motions, that no motion admits of continuity except rotatory motion: consequently
neither alteration nor increase admits of continuity. We need now say no more in support of the position that
there is no process of change that admits of infinity or continuity except rotatory locomotion.
9
It can now be shown plainly that rotation is the primary locomotion. Every locomotion, as we said before, is
either rotatory or rectilinear or a compound of the two: and the two former must be prior to the last, since
they are the elements of which the latter consists. Moreover rotatory locomotion is prior to rectilinear
locomotion, because it is more simple and complete, which may be shown as follows. The straight line
traversed in rectilinear motion cannot be infinite: for there is no such thing as an infinite straight line; and
even if there were, it would not be traversed by anything in motion: for the impossible does not happen and it
is impossible to traverse an infinite distance. On the other hand rectilinear motion on a finite straight line is if
it turns back a composite motion, in fact two motions, while if it does not turn back it is incomplete and
perishable: and in the order of nature, of definition, and of time alike the complete is prior to the incomplete
and the imperishable to the perishable. Again, a motion that admits of being eternal is prior to one that does
not. Now rotatory motion can be eternal: but no other motion, whether locomotion or motion of any other
kind, can be so, since in all of them rest must occur and with the occurrence of rest the motion has perished.
Moreover the result at which we have arrived, that rotatory motion is single and continuous, and rectilinear
motion is not, is a reasonable one. In rectilinear motion we have a definite startingpoint, finishingpoint,
middlepoint, which all have their place in it in such a way that there is a point from which that which is in
motion can be said to start and a point at which it can be said to finish its course (for when anything is at the
limits of its course, whether at the startingpoint or at the finishingpoint, it must be in a state of rest). On the
other hand in circular motion there are no such definite points: for why should any one point on the line be a
PHYSICS
9 106
Page No 110
limit rather than any other? Any one point as much as any other is alike startingpoint, middlepoint, and
finishingpoint, so that we can say of certain things both that they are always and that they never are at a
startingpoint and at a finishingpoint (so that a revolving sphere, while it is in motion, is also in a sense at
rest, for it continues to occupy the same place). The reason of this is that in this case all these characteristics
belong to the centre: that is to say, the centre is alike startingpoint, middlepoint, and finishingpoint of the
space traversed; consequently since this point is not a point on the circular line, there is no point at which that
which is in process of locomotion can be in a state of rest as having traversed its course, because in its
locomotion it is proceeding always about a central point and not to an extreme point: therefore it remains
still, and the whole is in a sense always at rest as well as continuously in motion. Our next point gives a
convertible result: on the one hand, because rotation is the measure of motions it must be the primary motion
(for all things are measured by what is primary): on the other hand, because rotation is the primary motion it
is the measure of all other motions. Again, rotatory motion is also the only motion that admits of being
regular. In rectilinear locomotion the motion of things in leaving the startingpoint is not uniform with their
motion in approaching the finishingpoint, since the velocity of a thing always increases proportionately as it
removes itself farther from its position of rest: on the other hand rotatory motion is the only motion whose
course is naturally such that it has no startingpoint or finishingpoint in itself but is determined from
elsewhere.
As to locomotion being the primary motion, this is a truth that is attested by all who have ever made mention
of motion in their theories: they all assign their first principles of motion to things that impart motion of this
kind. Thus 'separation' and 'combination' are motions in respect of place, and the motion imparted by 'Love'
and 'Strife' takes these forms, the latter 'separating' and the former 'combining'. Anaxagoras, too, says that
'Mind', his first movent, 'separates'. Similarly those who assert no cause of this kind but say that 'void'
accounts for motionthey also hold that the motion of natural substance is motion in respect of place: for
their motion that is accounted for by 'void' is locomotion, and its sphere of operation may be said to be place.
Moreover they are of opinion that the primary substances are not subject to any of the other motions, though
the things that are compounds of these substances are so subject: the processes of increase and decrease and
alteration, they say, are effects of the 'combination' and 'separation' of atoms. It is the same, too, with those
who make out that the becoming or perishing of a thing is accounted for by 'density' or 'rarity': for it is by
'combination' and 'separation' that the place of these things in their systems is determined. Moreover to these
we may add those who make Soul the cause of motion: for they say that things that undergo motion have as
their first principle 'that which moves itself': and when animals and all living things move themselves, the
motion is motion in respect of place. Finally it is to be noted that we say that a thing 'is in motion' in the strict
sense of the term only when its motion is motion in respect of place: if a thing is in process of increase or
decrease or is undergoing some alteration while remaining at rest in the same place, we say that it is in
motion in some particular respect: we do not say that it 'is in motion' without qualification.
Our present position, then, is this: We have argued that there always was motion and always will be motion
throughout all time, and we have explained what is the first principle of this eternal motion: we have
explained further which is the primary motion and which is the only motion that can be eternal: and we have
pronounced the first movent to be unmoved.
10
We have now to assert that the first movent must be without parts and without magnitude, beginning with the
establishment of the premisses on which this conclusion depends.
One of these premisses is that nothing finite can cause motion during an infinite time. We have three things,
the movent, the moved, and thirdly that in which the motion takes place, namely the time: and these are either
all infinite or all finite or partlythat is to say two of them or one of themfinite and partly infinite. Let A be
PHYSICS
10 107
Page No 111
the movement, B the moved, and G the infinite time. Now let us suppose that D moves E, a part of B. Then
the time occupied by this motion cannot be equal to G: for the greater the amount moved, the longer the time
occupied. It follows that the time Z is not infinite. Now we see that by continuing to add to D, I shall use up
A and by continuing to add to E, I shall use up B: but I shall not use up the time by continually subtracting a
corresponding amount from it, because it is infinite. Consequently the duration of the part of G which is
occupied by all A in moving the whole of B, will be finite. Therefore a finite thing cannot impart to anything
an infinite motion. It is clear, then, that it is impossible for the finite to cause motion during an infinite time.
It has now to be shown that in no case is it possible for an infinite force to reside in a finite magnitude. This
can be shown as follows: we take it for granted that the greater force is always that which in less time than
another does an equal amount of work when engaged in any activityin heating, for example, or sweetening
or throwing; in fact, in causing any kind of motion. Then that on which the forces act must be affected to
some extent by our supposed finite magnitude possessing an infinite force as well as by anything else, in fact
to a greater extent than by anything else, since the infinite force is greater than any other. But then there
cannot be any time in which its action could take place. Suppose that A is the time occupied by the infinite
power in the performance of an act of heating or pushing, and that AB is the time occupied by a finite power
in the performance of the same act: then by adding to the latter another finite power and continually
increasing the magnitude of the power so added I shall at some time or other reach a point at which the finite
power has completed the motive act in the time A: for by continual addition to a finite magnitude I must
arrive at a magnitude that exceeds any assigned limit, and in the same way by continual subtraction I must
arrive at one that falls short of any assigned limit. So we get the result that the finite force will occupy the
same amount of time in performing the motive act as the infinite force. But this is impossible. Therefore
nothing finite can possess an infinite force. So it is also impossible for a finite force to reside in an infinite
magnitude. It is true that a greater force can reside in a lesser magnitude: but the superiority of any such
greater force can be still greater if the magnitude in which it resides is greater. Now let AB be an infinite
magnitude. Then BG possesses a certain force that occupies a certain time, let us say the time Z in moving D.
Now if I take a magnitude twice as great at BG, the time occupied by this magnitude in moving D will be half
of EZ (assuming this to be the proportion): so we may call this time ZH. That being so, by continually taking
a greater magnitude in this way I shall never arrive at the full AB, whereas I shall always be getting a lesser
fraction of the time given. Therefore the force must be infinite, since it exceeds any finite force. Moreover the
time occupied by the action of any finite force must also be finite: for if a given force moves something in a
certain time, a greater force will do so in a lesser time, but still a definite time, in inverse proportion. But a
force must always be infinitejust as a number or a magnitude isif it exceeds all definite limits. This point
may also be proved in another wayby taking a finite magnitude in which there resides a force the same in
kind as that which resides in the infinite magnitude, so that this force will be a measure of the finite force
residing in the infinite magnitude.
It is plain, then, from the foregoing arguments that it is impossible for an infinite force to reside in a finite
magnitude or for a finite force to reside in an infinite magnitude. But before proceeding to our conclusion it
will be well to discuss a difficulty that arises in connexion with locomotion. If everything that is in motion
with the exception of things that move themselves is moved by something else, how is it that some things,
e.g. things thrown, continue to be in motion when their movent is no longer in contact with them? If we say
that the movent in such cases moves something else at the same time, that the thrower e.g. also moves the air,
and that this in being moved is also a movent, then it would be no more possible for this second thing than for
the original thing to be in motion when the original movent is not in contact with it or moving it: all the
things moved would have to be in motion simultaneously and also to have ceased simultaneously to be in
motion when the original movent ceases to move them, even if, like the magnet, it makes that which it has
moved capable of being a movent. Therefore, while we must accept this explanation to the extent of saying
that the original movent gives the power of being a movent either to air or to water or to something else of the
kind, naturally adapted for imparting and undergoing motion, we must say further that this thing does not
cease simultaneously to impart motion and to undergo motion: it ceases to be in motion at the moment when
PHYSICS
10 108
Page No 112
its movent ceases to move it, but it still remains a movent, and so it causes something else consecutive with it
to be in motion, and of this again the same may be said. The motion begins to cease when the motive force
produced in one member of the consecutive series is at each stage less than that possessed by the preceding
member, and it finally ceases when one member no longer causes the next member to be a movent but only
causes it to be in motion. The motion of these last twoof the one as movent and of the other as movedmust
cease simultaneously, and with this the whole motion ceases. Now the things in which this motion is
produced are things that admit of being sometimes in motion and sometimes at rest, and the motion is not
continuous but only appears so: for it is motion of things that are either successive or in contact, there being
not one movent but a number of movents consecutive with one another: and so motion of this kind takes
place in air and water. Some say that it is 'mutual replacement': but we must recognize that the difficulty
raised cannot be solved otherwise than in the way we have described. So far as they are affected by 'mutual
replacement', all the members of the series are moved and impart motion simultaneously, so that their
motions also cease simultaneously: but our present problem concerns the appearance of continuous motion in
a single thing, and therefore, since it cannot be moved throughout its motion by the same movent, the
question is, what moves it?
Resuming our main argument, we proceed from the positions that there must be continuous motion in the
world of things, that this is a single motion, that a single motion must be a motion of a magnitude (for that
which is without magnitude cannot be in motion), and that the magnitude must be a single magnitude moved
by a single movent (for otherwise there will not be continuous motion but a consecutive series of separate
motions), and that if the movement is a single thing, it is either itself in motion or itself unmoved: if, then, it
is in motion, it will have to be subject to the same conditions as that which it moves, that is to say it will itself
be in process of change and in being so will also have to be moved by something: so we have a series that
must come to an end, and a point will be reached at which motion is imparted by something that is unmoved.
Thus we have a movent that has no need to change along with that which it moves but will be able to cause
motion always (for the causing of motion under these conditions involves no effort): and this motion alone is
regular, or at least it is so in a higher degree than any other, since the movent is never subject to any change.
So, too, in order that the motion may continue to be of the same character, the moved must not be subject to
change in respect of its relation to the movent. Moreover the movent must occupy either the centre or the
circumference, since these are the first principles from which a sphere is derived. But the things nearest the
movent are those whose motion is quickest, and in this case it is the motion of the circumference that is the
quickest: therefore the movent occupies the circumference.
There is a further difficulty in supposing it to be possible for anything that is in motion to cause motion
continuously and not merely in the way in which it is caused by something repeatedly pushing (in which case
the continuity amounts to no more than successiveness). Such a movent must either itself continue to push or
pull or perform both these actions, or else the action must be taken up by something else and be passed on
from one movent to another (the process that we described before as occurring in the case of things thrown,
since the air or the water, being divisible, is a movent only in virtue of the fact that different parts of the air
are moved one after another): and in either case the motion cannot be a single motion, but only a consecutive
series of motions. The only continuous motion, then, is that which is caused by the unmoved movent: and this
motion is continuous because the movent remains always invariable, so that its relation to that which it moves
remains also invariable and continuous.
Now that these points are settled, it is clear that the first unmoved movent cannot have any magnitude. For if
it has magnitude, this must be either a finite or an infinite magnitude. Now we have already'proved in our
course on Physics that there cannot be an infinite magnitude: and we have now proved that it is impossible
for a finite magnitude to have an infinite force, and also that it is impossible for a thing to be moved by a
finite magnitude during an infinite time. But the first movent causes a motion that is eternal and does cause it
during an infinite time. It is clear, therefore, that the first movent is indivisible and is without parts and
without magnitude.
PHYSICS
10 109
Page No 113
THE END
PHYSICS
10 110
Bookmarks
1. Table of Contents, page = 3
2. PHYSICS, page = 5
3. by Aristotle, page = 5
4. Book I, page = 6
5. 1, page = 6
6. 2, page = 7
7. 3, page = 9
8. 4, page = 10
9. 5, page = 12
10. 6, page = 13
11. 7, page = 14
12. 8, page = 16
13. 9, page = 17
14. Book II, page = 18
15. 1, page = 18
16. 2, page = 19
17. 3, page = 20
18. 4, page = 22
19. 5, page = 23
20. 6, page = 24
21. 7, page = 25
22. 8, page = 26
23. 9, page = 27
24. Book III, page = 28
25. 1, page = 28
26. 2, page = 30
27. 3, page = 30
28. 4, page = 31
29. 5, page = 33
30. 6, page = 36
31. 7, page = 38
32. 8, page = 39
33. Book IV, page = 39
34. 1, page = 39
35. 2, page = 41
36. 3, page = 42
37. 4, page = 43
38. 5, page = 45
39. 6, page = 46
40. 7, page = 48
41. 8, page = 49
42. 9, page = 51
43. 10, page = 53
44. 11, page = 54
45. 12, page = 56
46. 13, page = 57
47. 14, page = 59
48. Book V, page = 60
49. 1, page = 60
50. 2, page = 62
51. 3, page = 64
52. 4, page = 65
53. 5, page = 67
54. 6, page = 68
55. Book VI, page = 69
56. 1, page = 69
57. 2, page = 71
58. 3, page = 73
59. 4, page = 74
60. 5, page = 75
61. 6, page = 77
62. 7, page = 78
63. 8, page = 79
64. 9, page = 81
65. 10, page = 82
66. Book VII, page = 83
67. 1, page = 83
68. 2, page = 85
69. 3, page = 87
70. 4, page = 88
71. 5, page = 91
72. Book VIII, page = 92
73. 1, page = 92
74. 2, page = 94
75. 3, page = 95
76. 4, page = 97
77. 5, page = 99
78. 6, page = 102
79. 7, page = 104
80. 8, page = 106
81. 9, page = 110
82. 10, page = 111